Epidemiological Report

Leptospirosis

Historic Series 2010 – 2021

Márcia Regina Buzzaro, Roberta Maria Fernandes Spínolao

Division of Zoonotic and Vector-Borne Diseases
Epidemiological Surveillance Center "Prof. Alexandre Vranjac"
Disease Control Coordination
Sao Paulo State Health Department

DOI: https://doi.org/10.57148/bepa.2022.v.19.37951

VOL. 20 • **№** 219 • **YEAR** 2023 • **ISSN** 1806-4272

Correspondence

E-mail: dvzoo@saude.sp.gov.br **Institution:** ESC|DCC/SHD-SP

Address: Av. Dr. Arnaldo, 351 - 6th floor. CEP: 01246-000. Sao Paulo-SP, Brazil

INTRODUCTION

The floods that hit the state of São Paulo, Brazil, every year bring risks to the health of the population, especially leptospirosis, a febrile infectious disease of sudden onset, whose clinical spectrum can vary from an inapparent or oligosymptomatic process to severe forms associated with fulminant manifestations. Its frequency is related to the precarious conditions of sanitary infrastructure and the high infestation of infected rodents.

Leptospirosis can occur throughout the year; however, it has a higher incidence in the summer months because of the rains and floods that occur at that time. Consequently, they provide a greater chance of collective human contact with rodent urine.

ETIOLOGIC AGENT

The etiologic agent is the obligate aerobic helical bacterium (spirochete) of the genus *Leptospira*, of which 14 pathogenic species are known, and the most important is *L. interrogans*. The basic taxonomic unit is the serovar (serotype).

There are more than 250 identified serovars, each with its preferred host(s), although an animal species may harbor one or more. In Brazil, the serovars *Icterohaemorrhagiae* and *Copenhageni* are related to the most severe cases of the disease.

MODE OF TRANSMISSION

A broad spectrum of domestic and wild synanthropic animals serves as a reservoir for persistent foci of leptospirosis infection. In urban areas, the main rodents are *Rattus norvegicus* (common rat or sewer rat), *Rattus rattus* (roof rat or black rat), and *Mus musculus* (house mouse). These animals, which do not develop the disease when infected, harbor leptospira in their kidneys, and eliminate it alive in the environment and contaminate water, soil, and food. Other reservoirs of leptospirosis include dogs, pigs, cattle, horses, sheep, and goats.

Human infection results from direct or indirect exposure to the urine of infected animals. The penetration of the microorganism occurs through skin lesions, intact skin immersed for long periods in contaminated water, or through mucous membranes. Other modes of transmission, although infrequent, are contact with infected blood, tissues, and organs; accidental contagion in laboratories; and ingestion of contaminated water or food. Interhuman transmission is very rare and of little epidemiological relevance. Humans are just accidental and terminal hosts in the chain of transmission.

EPIDEMIOLOGICAL SITUATION

In this report, a descriptive analysis was carried out on the information from the epidemiological investigation forms of confirmed cases of leptospirosis of people residing in the state of São Paulo (ESP), from the database of the Notifiable Diseases Information System (SINAN), of those who had the onset of symptoms between January 01, 2010, and December 31, 2021.

During this period, the disease occurred in all regions of São Paulo, and the highest incidences were recorded in Registro, Santos, Mogi das Cruzes, Assis, Campinas, São José dos Campos, Osasco, capital, Caraguatatuba, and Taubaté, as shown in Table 1. Santos, Presidente Venceslau, Itapeva, Bauru, Santo André, the capital, Sorocaba, Osasco, Registro, Mogi das Cruzes, and Franca draw attention because of the higher fatalities than the state average.

Table 1. Confirmed cases, average incidence rate, deaths, and lethality of leptospirosis according to epidemiological surveillance group (GVE) of residence, ESP, Brazil – 2010 to 2021.*

GVE of residence	Confirmed cases	Average incidence rate	Deaths	Lethality
GVE 1 CAPITAL	2,186	1.55	299	13.68
GVE 7 SANTO ANDRÉ	391	1.22	56	14.32
GVE 8 MOGI DAS CRUZES	939	2.73	123	13.10
GVE 9 FRANCO DA ROCHA	87	1.28	10	11.49
GVE 10 OSASCO	600	1.73	80	13.33
GVE 11 ARAÇATUBA	6	0.07	0	0.00
GVE 12 ARARAQUARA	33	0.28	2	6.06
GVE 13 ASSIS	108	1.90	9	8.33
GVE 14 BARRETOS	14	0.27	1	7.14
GVE 15 BAURU	63	0.47	12	19.05
GVE 16 BOTUCATU	53	0.75	3	5.66
GVE 17 CAMPINAS	970	1.85	77	7.94
GVE 18 FRANCA	23	0.28	3	13.04
GVE 19 MARÍLIA	68	0.89	4	5.88
GVE 20 PIRACICABA	241	1.33	17	7.05
GVE 21 PRESIDENTE PRUDENTE	20	0.36	2	10.00
GVE 22 PRESIDENTE VENCESLAU	5	0.14	1	20.00
GVE 23 REGISTRO	145	4.33	19	13.10
GVE 24 RIBEIRÃO PRETO	68	0.40	8	11.76
GVE 25 SANTOS	684	3.22	153	22.37
gve 26 são joão da boa vista	65	0.67	4	6.15
GVE 27 SÃO JOSÉ DOS CAMPOS	214	1.71	25	11.68
GVE 28 CARAGUATATUBA	56	1.50	3	5.36
GVE 29 SÃO JOSÉ DO RIO PRETO	179	1.15	17	9.50
GVE 30 JALES	21	0.67	2	9.52

GVE of residence	Confirmed cases	Average incidence rate	Deaths	Lethality
GVE 31 SOROCABA	371	1.46	50	13.48
GVE 32 ITAPEVA	41	1.23	8	19.51
GVE 33 TAUBATÉ	192	1.50	23	11.98
TOTAL	7,843	1.49	1,009	12.86

Source: Division of Zoonoses/CVE/CCD/SES-SP. *Data extracted on June 6, 2022.

In ESP, from 2010 to 2021, the highest incidence was recorded in 2011 (2.36/100,000 inhabitants) and the lowest in 2021 (0.64/100,000 inhabitants). The second lowest incidence occurred in 2020 (0.72). As for the case fatality rate, the lowest was in 2012 (9.90%) and the highest was in 2020 (16.72%) (Table 2).

Table 2. Frequency of cases and deaths, coefficient of incidence, and lethality of leptospirosis by year of symptom onset, ESP, Brazil, 2010 to 2021.*

Year of symptom onset	Frequency of cases	Coefficient of incidence	Frequency of deaths	Lethality
2010	892	2.16	106	11.88
2011	981	2.36	116	11.82
2012	778	1.86	77	9.90
2013	949	2.17	112	11.80
2014	751	1.71	94	12.52
2015	628	1.41	91	14.49
2016	594	1.33	71	11.95
2017	537	1.19	80	14.90
2018	523	1.16	84	16.06
2019	578	1.26	80	13.84
2020	335	0.72	56	16.72
2021	297	0.64	42	14.14
Total	7,843		1,009	12.86

Source: Division of Zoonoses/CVE/CCD/SES-SP. *Data extracted on June 6, 2022.

It is worth mentioning that, regarding 2020, the year in which the covid-19 pandemic began, and 2021, when there was an overload of the health services aimed at this disease, the compulsory notification of many diseases had a significant decrease. This fact is likely to have occurred for leptospirosis, mainly in relation to mild and moderate cases, because of the lack of demand for services by the population, who feared being infected by the coronavirus in these places. In addition, these clinical conditions may have been confused with the pandemic disease.

There was probably a greater notification of severe cases of leptospirosis because of its more characteristic clinical condition, thus contributing to increasing the overload of intensive care units in hospitals, which were already at full capacity from the Covid-19 crisis. This also hindered the performance of dialysis processes in a timely manner (important procedures in cases of leptospirosis with acute renal failure). Under this scenario, lethality in 2020 was the highest in the period studied.

It is interesting to observe the decreasing trends in the coefficient of incidence and the increasing lethality from 2010 to 2021 (Chart 1). It is worth mentioning that the trends remain the same even when the atypical years of 2020 and 2021 are subtracted from this analysis.

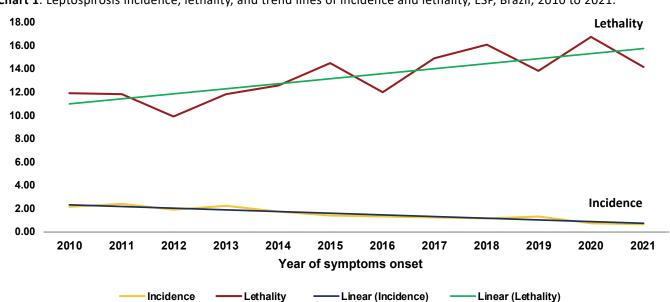
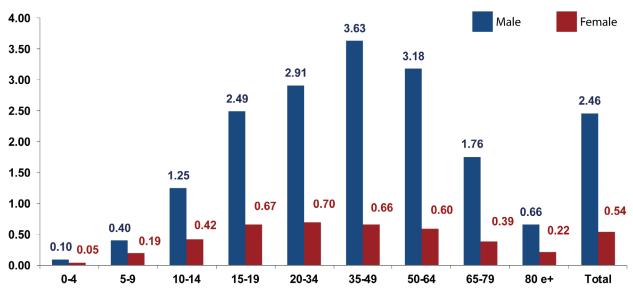



Chart 1. Leptospirosis incidence, lethality, and trend lines of incidence and lethality, ESP, Brazil, 2010 to 2021.*

Source: Division of Zoonoses/CVE/CCD/SES-SP. *Data extracted on June 6, 2022.

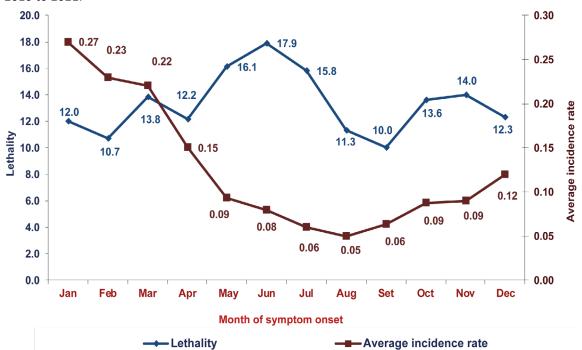
In the period studied, 81% of the cases occurred in males – a total of 6,372 males for 1,471 females. Measured by the average incidence rate, the age groups at greatest risk in men were 35 to 49 years and 50 to 64 years; among women, they were 20 to 34 years and 35 to 49 years (Chart 2).

Chart 2. Average incidence rate of leptospirosis by sex and age group, ESP, Brazil, 2010 to 2021.

Source: Division of Zoonoses/CVE/CCD/SES-SP. *Data extracted on June 6, 2022.

As for the variable "Occupation" of the epidemiological form, students, construction workers, those unemployed, housewives, retirees, waste pickers, truck drivers, and agricultural workers, among other professions, stand out. However, it is important to note that in approximately 50% of the cases this information was not filled in (Table 3).

Table 3. Confirmed cases of leptospirosis by occupation, ESP, Brazil, 2010 to 2021.*


Occupation	Total	Percentage
Blank	3,964	50.3
Student	490	6.2
gnored	419	5.3
Construction worker	348	4.4
Chronic unemployed person or whose usual occupation could not be obtained	346	4.4
Housewife	228	2.9
Retiree/pensioner	221	2.8
Vaste picker	154	2.0
Truck driver (regional and international routes)	64	0.8
General agricultural worker	56	0.7
Retail trade salesperson	40	0.5
Garbage collector	39	0.5
Gardener	38	0.5
Painter	38	0.5

Occupation	Total	Percentage
Retailer	36	0.5
Laborer	36	0.5
Passenger car driver	36	0.5
Independent sales representative	35	0.4
Janitor	35	0.4
Maintenance mechanic for automobiles, motorcycles, and similar vehicles	33	0.4
Housekeeper	27	0.3
Plumber	25	0.3

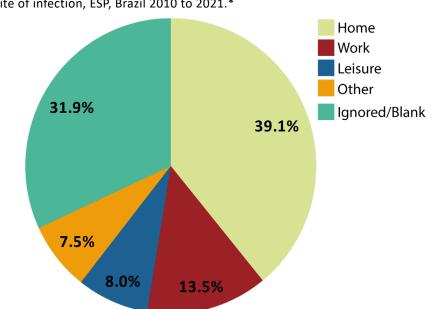
Source: Division of Zoonoses/CVE/CCD/SES-SP. *Data extracted on June 6, 2022.

The disease showed a clear seasonality throughout the record with a greater number of cases in the hot months (November to April), when heavy rains with floods occur, although there is incidence throughout the year. In this regard, attention is drawn to the higher lethality in the cold months, probably explained by the fact that health services do not think about leptospirosis when there is no flooding and do not consider the precarious housing conditions and the risks of disease to which the patients are exposed throughout the year. Thus, diagnosis and appropriate treatment are delayed (Chart 3).

Chart 3. Average incidence rate and lethality of leptospirosis by month of symptom onset, ESP, Brazil, 2010 to 2021.*

Source: Division of Zoonoses/CVE/CCD/SES-SP. *Data extracted on June 6, 2022.

Regarding the probable site of infection, 64.6% of the cases acquired the disease in urban areas (Chart 4). As for the environment, 39.1% contracted it at home (Chart 5).


20.9%

Urban
Rural
Peri-urban
Ignored/Blank

64.6%

Chart 4. Percentage of confirmed leptospirosis cases by area of probable site of infection, ESP, Brazil, 2010 to 2021.*

Source: Division of Zoonoses/CVE/CCD/SES-SP. *Data extracted on June 6, 2022.

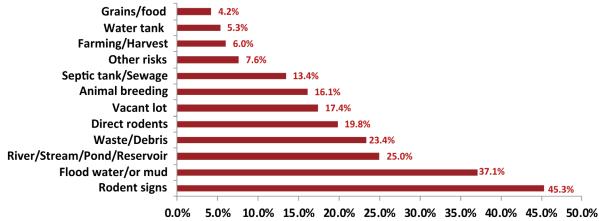
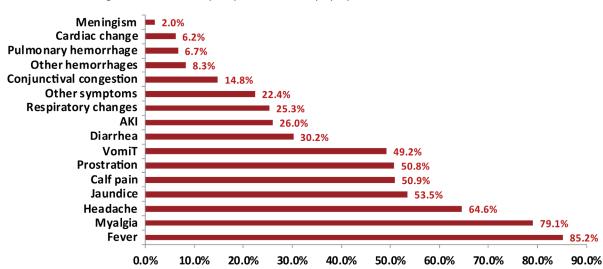


Chart 5. Percentage of confirmed leptospirosis cases by environment of probable site of infection, ESP, Brazil 2010 to 2021.*

Source: Division of Zoonoses/CVE/CCD/SES-SP. *Data extracted on June 6, 2022.

Regarding the most frequent risk situation that occurred in the 30 days before the first symptoms, 45.3% of the cases visited a place with signs of rodents, 37.1% had contact with flood water or mud, 25.0% had contact with water river or other bodies of water, 23.4% had contact with garbage or debris, 19.8% had direct contact with rodent urine, and 17.4% had contact with a vacant lot. It should be noted that more than one risk is incorrectly marked for each case (Chart 6).


Chart 6. Percentage of confirmed leptospirosis cases by risk situation occurring in the 30 days before symptoms, ESP, Brazil, 2010 to 2021*

Source: Division of Zoonoses/CVE/CCD/SES-SP. *Data extracted on June 6, 2022.

Regarding the symptoms that indicate the severity, 53.5% of the cases presented jaundice, 25.3% respiratory changes, 26.0% acute renal failure, 6.2% cardiac changes, and 15.0% had hemorrhagic conditions (Chart 7).

Chart 7. Percentage of confirmed leptospirosis cases by symptoms, ESP, Brazil, 2010 to 2021.*

Source: Division of Zoonoses/CVE/CCD/SES-SP. *Data extracted on June 6, 2022.

Regarding lethality, the disease was slightly higher in men, 13.2% (837 deaths), than in women, 11.7% (172 deaths). The age group with the highest rate in both sexes was 65 to 79 years, and women showed a higher rate than men (Chart 8). It is worth mentioning that men had higher lethality in five age groups compared to three age groups for women.

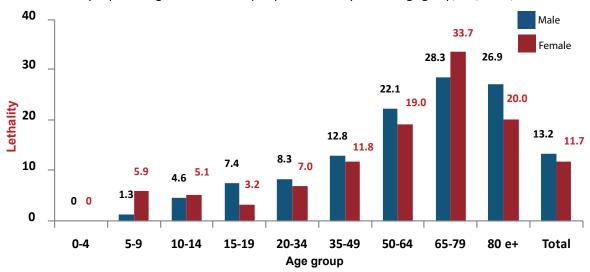


Chart 8. Lethality in percentage of confirmed leptospirosis cases by sex and age group, ESP, Brazil, 2010 to 2021.*

Source: Division of Zoonoses/CVE/CCD/SES-SP. *Data extracted on June 6, 2022.

In conclusion, during the period studied, leptospirosis affected all regions of the 28 GVE of the State of São Paulo. The disease showed clear seasonality, but it occurred throughout the year, including with higher lethality in the cold months. It affected more men, and adults and young adults of both sexes were the age groups with the highest incidence.

The high percentage (greater than 10%) of cases with jaundice draws the attention, which could mean that the health services were more prepared to diagnose severe forms, with characteristic clinical conditions, and paid little attention to the suspicion of mild and moderate forms without jaundice, which represent nonspecific clinical conditions. This fact could also explain the fatalities above 10%, considered high in this period, thus determining the need for constant refresher training aimed at early and adequate diagnosis and treatment of the disease.

As for the risk, leptospirosis in the territory of São Paulo was predominantly urban and acquired mainly at home, in situations where people encountered the urine of urban rodents. This determines that its prevention, in health, must be based on educational actions aimed at people and control of the murine population.

Publication

May 2023

Open access

How to cite

Buzzar MR, Spinola RMF. Epidemiological report of the surveillance of leptospirosis. Bepa [Internet]. 2023 Feb 1;19:1-12. Available in: https://periodicos.saude.sp.gov.br/BEPA182/article/view/3795

