COMPOSIÇÃO DE CAROTENÓIDES EM NECTARINA (*PRUNUS PERSICA*) BRASILEIRA

HELENA TEIXEIRA GODOY DÉLIA B. RODRIGUEZ-AMAYA*

RIALA 6/829

Godoy, H.T. & Rodriguez-Amaya, D.B. - Composição de carotenóides em nectarina brasileira. *Rev. Inst. Adolfo Lutz*, 57(1): 73-79, 1998.

RESUMO: Foi determinada pela primeira vez a composição de carotenóides de nectarina (*Prunus persica*). Onze carotenóides foram identificados: 13-cis- β -caroteno, trans- β -caroteno, 9-cis- β -caroteno, trans- ζ -caroteno, neo- β -criptoxantina, trans-p-criptoxantina, trans-luteína, trans-zeaxantina, trans-violaxantina, trans-mutatoxantina e trans-auroxantina. O principal carotenóide foi a trans- β -criptoxantina (3, 9 ± 0 , $7 \mu g/g$), perfazendo 40,6% do total de carotenóides (9, 6 ± 0 , $7 \mu g/g$), seguida pela trans-zeaxantina (1, 6 ± 0 , $3 \mu g/g$), trans-luteína (1, 1 ± 0 , $2 \mu g$) e trans- β -caroteno (1, 0 ± 0 , $2 \mu g/g$). O valor de vitamina A, proveniente de isômeros cis e trans da b-criptoxantina e do β -caroteno foi de 54 ± 5 ER/100 g. A composição de carotenóides de nectarina mostrou-se muito semelhante a do pêssego, fato esperado já que estas frutas pertencem à mesma família.

DESCRITORES: carotenóides, valor de vitamina A, nectarina.

INTRODUÇÃO

Como corantes naturais, os carotenóides desempenham um papel decisívo na escolha e compra de muitos alimentos pelos consumidores. A sua importância, no entanto, vai mais longe que o atributo da cor e reside nas suas funções fisiológicas. Destas, a atividade próvitamínica A de alguns deles é a mais estabelecida, reconhecida ao longo de muitos anos. Consequentemente, a determinação de próvitamina A tem sido considerada uma parte fundamental da análise de nutrientes. Outras funções foram mais recentemente atribuídas aos carotenóides, tais como inibição de câncer, fortalecimento do sistema imunológico e prevenção de doenças cardiovasculares^{2,3,4,6,13,20,21,22,23,25,33}. Estas atividades não são restritas às próvitaminas A, portanto, a determinação da composição completa de carotenóides tornou-se indispensável.

Ao contrário das frutas tropicais e sub-tropicais, nas quais os carotenóides predominam, as frutas de clima temperado são tipicamente pobres em carotenóides e ricas em antocianinas. Pêssego, damasco, nêspera e nectarina são praticamente as únicas frutas de clima temperado que são carotenogênicas. Por isso, o pêssego é a fruta mais estudada nos Estados Unidos em termos da composição de carotenóides ou somente em relação às pró-vitaminas A^{9,12,17,18,26,27}. Algumas investigações sobre os carotenóides de damasco^{10,18} e nêspera¹⁶ já foram também realizadas. Surpreendentemente, a composição de carotenóides em nectarina não foi ainda determinada. O único trabalho encontrado na literatura, de Bureau & Bushway⁵ determinou apenas as pró-vitaminas A, β-caroteno e β-criptoxantina.

No presente trabalho, a composição de carotenóides de nectarina (*Prunus persica*) produzida no Brasil foi determinada.

Departamento de Ciência de Alimentos Faculdade de Engenharia de Alimentos Universidade Estadual de Campinas C.P. 6121, CEP 13081-970, Campinas, SP, Brasil.

MATERIAL E MÉTODOS

Material

Os frutos de nectarina vieram da cidade de Limeira, estado de São Paulo, e foram adquiridos em supermercados e feiras-livres da região de Campinas. Cinco lotes foram analisados, sendo que cada lote foi composto de 5 a 10 frutos. Para cada lote, após a retirada das sementes, as polpas foram homogeneizadas em liquidificador tipo "Waring". Utilizou-se cerca de 100 g de polpa homogeneizada para a determinação de carotenóides.

Métodos

Várias precauções foram tomadas para evitar a isomerização e degradação dos carotenóides durante a análise, tais como: rapidez na conclusão da análise, controle da temperatura (<35°C) nas etapas de concentração, realização da saponificação a temperatura ambiente, proteção aos pigmentos da luz solar e artificial.

A composição de carotenóides foi determinada de acordo com RODRIGUEZ et alii²⁸. Resumidamente, o procedimento encontra-se esquematizado na Figura 1. Para a separação dos isômeros cis e trans de β-caroteno e β-criptoxantina, as frações destes carotenóides obtidos na coluna de MgO:HifloSupercel foram individualmente recromatografadas em coluna de Ca(OH)₂. Os isômeros do β-caroteno foram eluídos da coluna com éter de petróleo puro; já para os isômeros da β-criptoxantina utilizouse como eluente 10% de acetona em éter de petróleo.

Na identificação dos carotenóides, foram considerados conjuntamente os seguintes parâmetros: ordem de eluição na coluna, espectros de absorção nas regiões do ultravioleta e visível, valores de Rf na camada delgada de silica gel e reações químicas, como metilação com metanol acidificado, acetilação com anidrido acético, fotoisomerização catalizada por iodo e teste para epóxidos.

Utilizou-se um espectrofotômetro de duplo feixe, marca Perkin-Elmer, modelo Lambda 6, para resgistrar os espectros na faixa de comprimento de onda de 300 a 550 nm. Os máximos de absorção foram então comparados com os dados tabelados por DAVIES¹¹.

A quantificação foi feita a partir da absorvância máxima, aplicando-se a Lei de Beer, utilizando os coeficientes de absorção tabelados por DAVIES 11 e os determinados por GODOY & RODRIGUEZ-AMAYA 15 para os isômeros do β -caroteno e da β -criptoxantina. Os resultados foram expressos em μg de carotenóides por g de amostra.

O valor de vitamina A foi calculado considerando a atividade vitamínica A de cada isômero de carotenóide precursor (53% para o 13-cis-β-caroteno, 100% para o trans-β-caroteno, 38% para o 9-cis-β-caroteno, 42% para neo-β-criptoxantina, 57% para trans-β-criptoxantina)^{1,32}

e o fator de conversão de 6 μg de *trans-*β-caroteno correspondendo a 1 ER (equivalente de retinol), estabelecido pelo NAS-NRC²⁴.

Para a obtenção do perfil da composição de carotenóides por CLAE (cromatografia líquida de alta eficiência) uma pequena alíquota, do mesmo extrato aplicado na coluna aberta, foi injetada em um cromatógrafo a líquido Varian. O equipamento era constituído por um sistema de bombeamento ternário (modelo 5010), uma válvula injetora tipo "rheodyne", uma alça de amostragem de 10 µl de capacidade, um detetor UV-visível Varian (modelo 5100), operando a 450 nm, e um integrador-registrador Varian (modelo 4400). A separação cromatográfica se procedeu em coluna C_{18} (5 µm) de 250 x 4.6 d.i. mm marca Vydac 201-TP54 (Vydac Separation Group, Hesperia, CA), protegida por uma coluna de guarda C_{18} (10 µm) de 30 x 4.6 d.i. mm, marca Micropore MCH-120 (Varian). Operou-se sempre de modo isocrático, utilizando-se metanol:água (98:2) como fase móvel, numa vazão de 1,5 ml/min. Os pigmentos foram identificados por cocromatografia com padrões e frações isoladas das colunas de MgO:HifloSupercel e Ca(OH),.

RESULTADOS E DISCUSSÃO

Composição qualitativa

Os frutos maduros de nectarina apresentaram os seguintes carotenóides: 13-cis-β-caroteno, trans-β-caroteno, 9-cis-β-caroteno, trans-ζ-caroteno, neo-β-criptoxantina, trans-β-criptoxantina, trans luteína, trans zeaxantina, trans violaxantina, trans mutatoxantina e trans-auroxantina. As principais características dos pigmentos identificados estão apresentadas na Tabela 1 e os resultados das reações químicas encontram-se na Tabela 2.

β-Caroteno (β,β-caroteno) e ζ-caroteno (7,8,7',8'-tetrahidro-ψ,ψ-caroteno) foram identificados através da forma e máximos de absorção dos espectros na região do visível (Tabela 1). A ausência de grupos substituintes foi demonstrada pela eluição destes carotenos (hidrocarbonetos) junto com a frente do solvente na camada delgada de silica gel, desenvolvida por metanol 3% em benzeno.

Para as xantofilas, carotenóides que contém oxigênio além de carbono e hidrogênio, a estrutura básica (acíclica ou cíclica, número de ligações duplas conjugadas) também foi indicada pelos espectros de absorção. Os grupos substituintes manisfestaram-se primeiramente pelos Rfs mais baixos na camada delgada de sílica gel desenvolvida por metanol 3% em benzeno (Tabela 1). A β-criptoxantina, um monohidroxi-carotenóide, apresentou um Rf de 0,51 e a zeaxantina, um carotenóide dihidroxilado, apresentou um Rf de 0,11.

TABELA 1 - Principais características dos carotenóides de nectarina.

Pigmentos	λ máx (nm) ^a		A ^{1%6}	Atividade de pró-vit. A (%)°	Valor de RF camada delgada	Reações químicas
13-cis-β-caroteno	336 (422) 4	43 472	1730	53	0,97	Cis +
trans-β-caroteno	(424) 4	48 474	2592	100	0,99	trans +
9-cis-β-caroteno	335 (420)	144 471	2370	38	0,97	cis +
ζ-caroteno	378	397 424	2555	*	0,96	trans +
não identificado		432	2592	-	0,68	trans +
neo-β-criptoxantina	335 (422)	446 472	2386	50	0,49	acet, + cis +
trans-β-criptoxantina	(424)	447 474	2386	57	0,51	acet + trans +
luteina	423	446 474	2350	-	0,19	met + acet.+
zeaxantina	(422)	448 472	2350	•	0,11	acet. +
violaxantina	418	444 468	2550	-	0,09	acet. + epox. +
mutatoxantina	400 -	426 447	2592	-	0,11	acet. + epox. +
auroxantina	382	402 426	1850	-	0,07	acet. +

a Máximos de absorção em éter de petróleo; parênteses significam um ombro no lugar de pico.

O tipo e posição dos grupos substituintes foi verificado pelas reações químicas (Tabela 2). A presença de hidroxilas em β -criptoxantina (β , β -caroten-3-ol), luteína (β , ϵ -caroteno-3,3'-diol), zeaxantina (β , β -caroteno-3,3'diol), violaxantina (5,6,5',6'-diepoxi-5,6,5',6'-tetrahidro- β , β -caroteno-3,3'-diol), mutatoxantina (5,8-epoxi-5,8dihidro-β,β-caroteno-3,3'-diol) e auroxantina (5,8,5',8'-diepoxi-5,8,5',8'-tetrahidro-β,β-caroteno-3,3'-diol) foi confirmada pela reação positiva à acetilação com anidrido acético. A posição alílica de uma das duas hidroxilas da luteína foi demonstrada pela resposta positiva à metilação com metanol acidificado. A existência de epóxidos nas

TABELA 2 - Reações químicas das xantofilas encontradas em nectarina.

Xantofilas	Acetilação com anidrido acético	Metilação com metanol acidificado catalizado por HCI	Rearranjo epóxido-firanóide
β-criptoxantina	aumento do Rf de 0,51 para 0,90	negativa.	nenhuma mudança
luteina	aumento do Rf de 0,19 para 0,92	aumento de Rf de 0,19 para 0,40	nenhuma mudança
zeaxantina	aumento do Rf de 0,11 para 0,88	negativa	nenhuma mudança
violaxantina	aumento do Rf de 0,09 para 0,84	nogativa	deslocamento hipocrosômico de 40 nm
mutatoxantina	aumento do Rf de 0,11 para 0,86	negativa	nenhuma mudança
auroxantina	aumento do Rf de 0,07 para 0,85	negativa	nenhura mudança

valores de Rf calculados na carrada delgada de silica gel desenvolvida por metanol 3% em benzeno.

b Dados tabelados por Davies¹¹ e Godey & Rodriguez-Amaya¹⁵.

c Zechmeister33e Bauernfeind1.

posições 5,6 e 5',6' na violaxantina, indicada pelos máximos de absorção ligeiramente mais baixos que os do β-caroteno, foi confirmada pelo deslocamento hipsocrômico de aproximadamente 40 nm após a adição de HCl diluído, refletindo a transformação aos furanóides 5,8 e 5',8'. Os máximos de absorção aproximadamente 20 e 40 nm mais baixos que os do β-caroteno (Tabela 1) demonstraram a ocorrência de um e dois epóxidos, já nas posições 5,8 e 5',8' em mutatoxantina e auroxantina, respectivamente. A presença de epóxidos foi também indicada pela mudança da cor amarela ou laranja do carotenóide para azul na camada delgada após exposição a vapores de HCl concentrado.

A configuração *cis* ou *trans* dos carotenóides foi demonstrada pelos máximos de absorção dos *cis* isômeros ligeiramente mais baixos que os do *trans* carotenóide correspondente e picos *cis* na região ultravioleta, evidente nos isômeros do β-caroteno (Tabela 1). Além disso os isômeros *trans* sofreram um deslocamento hipsocrômico e os *cis* um deslocamento batocrômico com a fotoisomerização.

Um pigmento, que eluiu após o β-caroteno, apresentou um único máximo de absorção (λmáx a 432 nm em éter de petróleo e a 443 nm em metanol), forma característica de cetocarotenóide, porém não respondeu à redução com NaBH₄. A resposta negativa à acetilação mostrou que o composto não apresentava hidroxilas e após exposição a vapores de HCl não ocorreu mudança na coloração da mancha, indicando a ausência de grupo epóxido. Embora não tenha sido possível a sua identificação nem por

espectrometria de massa, devido à pequena quantidade, uma estimativa da concentração foi feita baseada na absortividade do B-caroteno.

Utilizou-se a CLAE também para a obtenção do perfil da composição de carotenóides. Mesmo sem quantificar, o cromatograma obtido por CLAE confirmou a predominância da β-criptoxantina.

Composição quantitativa

O principal pigmento encontrado foi a β-criptoxantina, representando 40,6% do conteúdo total de carotenóides de 9,6 μg/g (Tabela 3). Dos pigmentos encontrados na nectarina, são precursores de vitamina A o β-caroteno, a β-criptoxantina e os isômeros cis de ambos, fornecendo um valor de vitamina A de 54 RE/100 g. Em comparação com outras frutas brasileiras, a nectarina é apenas uma fonte moderada de pró-vitamina A (Tabela 4). Além do conteúdo baixo de carotenóides, a nectarina tem como principal pró-vitamina a β-criptoxantina, que possue 57% da biopotência do β-caroteno. Em termos de β-criptoxantina (Tabela 4), a nectarina é uma fruta de conteúdo médio.

BUREAU & BUSHWAY⁵ encontraram $0.5 \mu g/g$ de β -caroteno e $0.3 \mu g/g$ de β -criptoxantina em nectarina dos EUA, proporcionando um valor médio de vitamina A de apenas 11 ER/100g. Como estes autores não saponificaram as amostras, os ésteres de β -criptoxantina, forma predominante em frutas, não foram quantificados, explicando o baixo teor de β -criptoxantina.

TABELA 3 - Composição de carotenóides (µg/g) e valor de vitamina A (ER/100g) de nectarina*

Concentração (μg/g)				
Carotenóides	<u>Intervalo</u>	Média ± DP *	%	
13-cis-β-caroteno	ND - 0,2	0.1 ± 0.1	0,9	
trans-β-caroteno	0,8 - 1,1	$1,0 \pm 0,2$	10,4	
9-cis-fl-caroteno	ND - 0,1	$0,1 \pm 0,1$	0,8	
trans- - - - - - - - - - - - -	0,1 - 0,2	0.2 ± 0.1	2,1	
não-identificado	ND - 0,1	0.1 ± 0.1	0,9	
neo-β-criptoxantina	0,2 - 0,6	0.3 ± 0.2	3,1	
trans-β-criptoxantina	3,2 - 4,5	3.9 ± 0.7	40,6	
hácina	1,0 - 1,4	1.1 ± 0.2	11,4	
zeaxantina	1,1 - 2,0	1.6 ± 0.3	16,7	
violaxantina	0,5 - 0,9	0.8 ± 0.1	8,3	
nutatoxantina	ND - 0,1	-	-	
auroxantina	ND - 1,0	$0,4 \pm 0,3$	4,2	
Total	8,9 - 10,2	9,6 ± 0,7		
Valor de vitamina A	48 - 60	54 ± 5		

^{*} Média e desvios padrão de 5 lotes analisados em duplicata

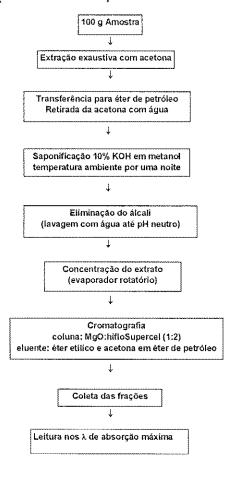

ND - não detectado; DP - desvio padrão

TABELA 4 - Comparação dos teores de β-criptoxantina (μg/g) e vitamina A (RE/100g) presente em frutas brasileiras*.

Fruta / cultivar ^{referència}	β-criptoxantina	valor de vitamina A
Acerola ⁷	3,6	64
Cajá ²⁹	16,9	190
Cajúř	•	
Amareko	0,5	16
Vermelho	I,l	42
Cyphomadra betacea ³⁰	14,0	250
Mamão ^{13,19,31}		
Solo	9,1	120
Tailândia	9,7	140
Comum	8,1	110
Formosa	8,6	190
Manga ¹⁴		
Haden	0,6	120
Tommy Atikins	0,4	220
Bourbon	0,4	140
Extrema	0,7	430
Ouro	0,8	310
Nectarina	3,9	54
Nespera ¹⁵	4,8	180
Pêssego ¹⁵	*	
Rei da Conserva	6,4	88
Diamente	4,1	55
Chileno	5,1	73
Pkpui ¹⁵	4,4	54
Pitanga ⁷	47,0	990

^{*} valores são médias de 3 a 5 lotes analisados em duplicata.

Figura 1 - Esquema da determinação de carotenóides em nectarina

AGRADECIMENTOS

Os autores agradecem à Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) pelo suporte fi-

nanceiro e ao Conselho Nacional de Pesquisa (CNPq) pela concessão da bolsa de pesquisa.

RIALA 6/829

GODOY, H.T. & RODRIGUEZ-AMAYA, D.B. - Carotenoid composition of Brazilian nectarine (*Prunus persica*). Rev. Inst. Adolfo Lutz, 57(1): 73-79, 1998.

ABSTRACT: The carotenoid composition of nectarine (*Prunus persica*) was determined for the first time. Eleven carotenoids were identified: 13-cis- β -carotene, trans- β -carotene, 9-cis- β -carotene, trans- ζ -carotene, neo- β -cryptoxanthin, trans-b-cryptoxanthin, trans-lutein, trans-zeaxanthin, trans-violaxanthin, trans-mutatoxanthin and trans-auroxanthin. The principal carotenoid was trans- β -cryptoxanthin ($3.9 \pm 0.7 \mu g/g$), accounting for 40.6 % of the total carotenoid content ($9.6 \pm 0.7 \mu g/g$), followed by trans-zeaxanthin ($1.6 \pm 0.3 \mu g/g$), trans-lutein ($1.1 \pm 0.2 \mu g/g$) and trans- β -carotene ($1.0 \pm 0.2 \mu g/g$). The vitamin A value, provided by β -cryptoxanthin and β -carotene cis and trans isomers, was $54 \pm 5 RE/100 g$. The carotenoid composition of nectarine resembled that of peach; this is understandable since both fruits belong to the same family.

DESCRIPTORS: carotenoids, vitamin A value, nectarine

REFERÊNCIAS BIBLIOGRÁFICAS

- 1. BAUERNFEIND, J.C. Carotenoid vitamin A precursors and analogs in foods and feeds. *J. Agric. Food Chem.*, 20: 456-473, 1972.
- 2. BENDICH, A. Carotenoids and the immune response. *J. Nutr.*, *119*: 112-115, 1990.
- BENDICH, A. Recent advances in clinical research involving carotenoids. *Pure Appl. Chem.*, 66: 1017-1024, 1994.
- 4.BENDICH, A. & OLSON, J.A. Biological actions of carotenoids. *FASEB J. 3*: 1927-1932, 1989.
- 5. BUREAU, J.L. & BUSHWAY, R.J. HPLC determination of carotenoids in fruits and vegetables in the United States. *J. Food Sci.*, 51: 128-130, 1986.
- 6. BYERS, T. & PERRY, G. Dietary carotenes, vitamin C, and vitamin E as protective antioxidants in human cancers. *Am. Rev. Nutr.*, 12: 139-159, 1992.
- 7. CAVALCANTE, M.L. & RODRIGUEZ-AMAYA, D.B. Carotenoid composition of the tropical fruits Eugenia uniflora and Malpighia glabra. In: CHARALAMBUS, G. (ed), Food Science and Human Nutrition, p. 643-50, Amsterdam, Elsevier Science Publishers B.V., 1992.

- 8. CECCHI, H.M. & RODRIGUEZ-AMAYA, D.B. Carotenoid composition and vitamin A value of fresh and pasteurized cashew-apple (*Anacardium occidentale* L.) juice. *J. Food Sci.*, 46: 147-149, 1981.
- 9. CURL, A.L. The carotenoids of cling peaches. *Food Res.*, 24: 413-421, 1959.
- 10. CURL, A.L. The carotenoids of apricots. *Food Res.*, 25: 190-196, 1960.
- DAVIES, B.H. Carotenoids. In GOODWIN, T.W.(ed),. Chemistry and Biochemistry of Plant Pigments, 2nd ed., vol. 2, p. 38-165, London, Academic Press, 1976.
- 12. GEBHARDT, S.E.; ELKINS, E.R.; HUMPHREY, J. Comparison of two methods for determining the vitamin A value of clingstone peaches. *J. Agric. Food Chem.*, 25: 629-632, 1977.
- 13. GERSTER, H. Potential role of beta-carotene in the prevention of cardiovascular disease. *Inter. J. Vit. Nutr. Res.*, 61: 277-291, 1991.
- GODOY, H.T. & RODRIGUEZ-AMAYA, D.B. -Carotenoid composition of commercial mangoes from Brazil. *Lebensm. Wiss. Technol.*, 22: 104-106, 1989.
- 15. GODOY, H.T. & RODRIGUEZ-AMAYA, D.B. Occurrence of *cis*-isomers of provitamin A in Brazilian fruits. *J. Agric. Food Chem.*, 42: 1306-1313, 1994.

- GODOY, H.T. & RODRIGUEZ-AMAYA, D.B. -Determination of the carotenoids and vitamin A value of Brazilian loquats (*Eriobotrya japonica* Lindl.). Arch. Latinoamer. Nutr., 45: 113-124, 1995.
- 17. GROSS, J. Carotenoid changes in the mesocarp of the Readhaven peach (*Prunus Persica*) during ripening. *Z. Pfanzenphysiol*, 94: 461-465, 1979.
- KHACHIK, F.; BEECHER, G.R.; LUSBY, W.R. -Separation, identification and quantification of the major carotenoids in extracts of apricots, peaches, cantaloupe and pink grapefruit by liquid chromatography. J. Agric. Food Chem., 37: 1465-1473, 1989.
- KIMURA, M.; RODRIGUEZ-AMAYA, D.B.; YOKOYAMA, S.M. - Cultivar differences and geographic effects on the carotenoid composition and vitamin A value of papaya. *Lebensm. Wiss. Technol.*, 24: 415-418, 1991.
- KRINSKY, N.I. Carotenoids in medicine. In: KRINSKY, N.I., MATHEWS-ROTH, M.M. & TAYLOR, R.F. (eds.), Carotenoids: Chemistry and Biology, p. 279-291, New York, Plenum Press, 1990.
- 21. KRINSKY, N.I. The biological properties of carotenoids. Pure Appl. Chem., 66: 1003-1010, 1994.
- 22. MATHEWS-ROTH, M.M. Carotenoids and cancer prevention experimental and epidemiological studies. *Pure Appl. Chem.*, *57*: 717-722, 1985.
- 23. MATHEWS-ROTH, M.M. Recent progress in the medical application of carotenoids. *Pure Appl. Chem.*, 63: 147-156, 1991.
- NAS-NRC Recommended Dietary Allowances, 10th ed, p. 78-92, Washington, National Academy of Science/National Research Council, 1989.
- 25. OLSON, J.A. Biological actions of carotenoids. J.Nutr., 19: 94-95, 1989.

- 26. PHILIP, T. & CHEN, T.S. Development of a method for the quantitative estimation of provitamin A carotenoids in some fruits. *J. Food Sci.*, 53: 1703-1706, 1988,
- 27. QUACKENBUSH, F.W. Reverse phase HPLC separation of *cis* and *trans* carotenoids and its application to beta-carotene in food materials. *J. Liq. Chromatogr.* 10: 643-653, 1987.
- 28. RODRIGUEZ, D.B.; RAYMUNDO, L.C.; LEE, T.C.; SIMPSON, K.L.; CHICHESTER, C.O. Carotenoid pigment changes in ripening *Momordica charantia* fruits. *Ann. Bot.* 40: 615-622, 1976.
- 29. RODRIGUEZ-AMAYA, D.B.; KIMURA, M. Composição de carotenóides e valor de vitamina A em cajá (*Spondias lutea*). *Ciênc. Tecnol. Aliment. 9*: 148-162, 1989.
- 30. RODRIGUEZ-AMAYA, D.B.; BOBBIO, P.A.; BOBBIO, F.O. Carotenoid composition and vitamin A value of the Brazilian fruit *Cyphomandra betacea*. *Food Chem.*, 12: 61-65, 1983.
- 31. WILBERG, V.C. & RODRIGUEZ-AMAYA, D.B. HPLC quantitation of major carotenoids of fresh and processed guava, mango and papaya. *Lebesm. Wiss. Technol.*, 28: 474-480, 1995.
- 32. ZECHMEISTER, L. Cis-trans Isomeric Carotenoids Vitamins A and Aryl Polyenes, Vienna, Springer-Verlag, 1962.
- 33. ZIEGLER, R.G. Vegetables, fruits, and carotenoids and the risk of cancer. *Am. J. Clin. Nutr.*, *53*: 251-259, 1991.

Recebido para publicação em 04/06/97