ESPECIFIDADE IMUNOLÓGICA DOS POLISSACARÍDEOS EXTRAÍDOS DE DIFERENTES GRUPOS DE NEISSERIA MENINGITIDIS *

Solange Barros CARBONARE **
Augusta Kiyomi TAKEDA **
Filomena B. M. JORDÃO **
Augusto de E. TAUNAY **

RIAL A/407

CARBONARE, S. B.; TAKEDA, A. K.; JORDÃO, F. B. M. & TAUNAY, A. E.
 — Especificidade imunológica dos polissacarídeos extraídos de diferentes grupos de Neisseria meningitidis. Rev. Inst. Adolfo Lutz, 34: 119-125, 1974.

RESUMO: A partir de culturas de *Neisseria meningitidis* em meio líquido e através de precipitação com Cetavlon (brometo de cetil trimetil amôneo), foram obtidos polissacarídeos de oito diferentes grupos. A especificidade imunológica dos polissacarídeos foi estudada pelas reações de imunoeletroforese cruzada e hemaglutinação passiva contra soros de coelhos imunizados com *Neisseria meningitidis*, soro-grupos A, B, C, D, 29E, X, Y e Z.

DESCRITORES: Neisseria meningitidis; polissacarídeos de Neisseria meningitidis, especificidade imunológica.

INTRODUÇÃO

O presente trabalho tem por objetivo estudar se o método de extração de polissacarídeo grupo específico de *Neisseria meningitidis*, preconizado por GOTSCHILICH et alii¹, poderia ser aplicado a outros grupos de *N. meningitidis* com a finalidade de utilizá-los nas reações de diagnóstico das infecções meningocócicas.

Para isso foram usados oito diferentes grupos de *N. meningitidis*, verificada a composição química dos antígenos extraídos pelo método acima citado, e analisada

a sua especificidade imunológica através de reações de eletroforese cruzada e hemaglutinação passiva.

MATERIAL E MÉTODOS

1. Culturas de Neisseria meningitidis

N. meningitidis dos grupos A-962, B-2092, D-128 e Y, provenientes do Center for Disease Control, Atlanta, Georgia, USA, e C-642, 29 E-648, X-645 e Z-646, provenientes do Laboratoire de Recherches de Micro-

^{*} Trabalho realizado na Seção de Imunologia do Instituto Adolfo Lutz, São Paulo, S. P.

^{**} Do Instituto Adolfo Lutz.

CARBONARE, S. B.; TAKEDA, A. K.; JORDÃO, F. B. M. & TAUNAY, A. E. — Especificidade imunológica dos polissacarídeos extraídos de diferentes grupos de Neisseria meningitidis. Rev. Inst. Adolfo Lutz, 34: 119-125, 1974.

biologie (Centre International de Reférence pour les Méningocoques), Parc du Pharo, Marseille VII, France, foram empregadas.

Partindo de cultura em ágar-chocolate, foram semeados balões de 600 ml de meio Müller-Hinton líquido com 5% de soro de coelho. Após 18 moras de incubação em banho-maria, 36°C, com agitação, foi retirada uma amostra para verificar o número de germes por ml, em espectrofotômetro Coleman Jr. II a 650 nm e leitura contra curva padrão. O controle de pureza das culturas foi feito através de esfregaços em lâminas corados pelo método de Gram.

2. Extração do antigeno polissacarideo

Usando a técnica de GOTSCHLICH et alii¹, nas culturas em meio líquido foi adicionado brometo de cetil trimetil amônio na proporção de 1 mg por 1 ml de meio. Deixou-se em repouso por uma hora e o precipitado formado foi lavado com solução salina 0,85%, tamponada com fosfato 0,01M com pH 7,2 (PBS 7,2), e posteriormente extraído exaustivamente com solução de cloreto de cálcio 0,9M e em seguida centrifugado.

Separados os sobrenadantes, precipitaram-se os ácidos nuclêicos com etanol 25% em banho de gelo, que foram retirados por centrifugação e a seguir precipitou-se o polissacarídeo com etanol 80% e o precipitado final foi ressuspendido em PBS-7,2.

3. Caracterização do antígeno

O trabalho foi baseado na caracterização do ácido siálico, principal componente do polissacarídeo da *N. meningitidis* do grupo C.

A identificação e quantificação do ácido siálico foi feita pelo método de SVENNER-HOLD⁵, usando o reagente de resorcinol e o ácido siálico* como padrão.

A determinação de proteínas foi feita pelo método de LOWRY², utilizando-se reagente de Folin e soro albumina bovina como padrão.

A determinação de lipídeos foi feita pelo método de ZOELLNER & KIRSCH⁶, utilizando-se o reagente de sufofosfovanilina e padrão de colesterol.

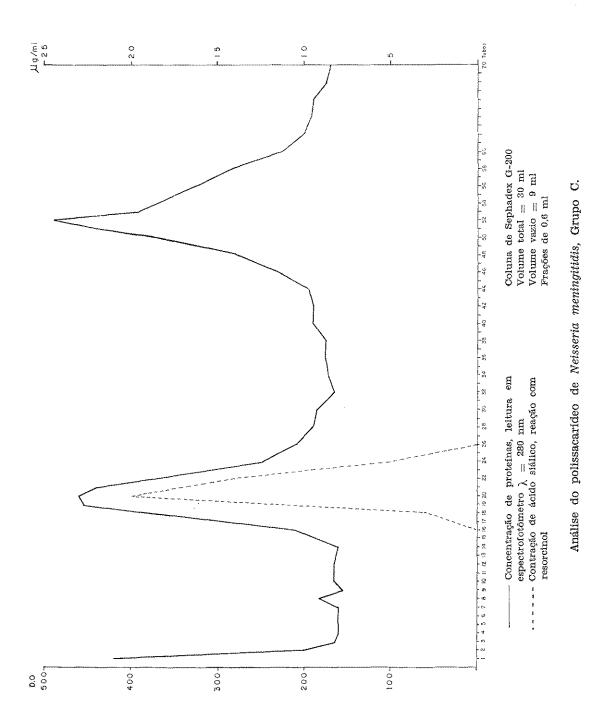
A detecção de carbohidratos foi feita pelo método de SCOTT & MELVIN⁴, utilizando-se o reagente de antrona e glicose como padrão, que não permite a identificação de cada componente do carbo-hidrato.

Fracionamento do antigeno obtido de N. meningitidis do grupo C.

A fração solúvel obtida em PBS-7,2 foi passada em coluna de Sephadex G-200, cujo volume vazio era 9,0 ml e tampão de eluição PBS-7,2. Nos eluatos de 0,6 ml foi verificada a presença de ácido siálico e proteínas, sendo o primeiro através de reação com resorcinol e o segundo em espectrofotômetro Beckman D.U. em 280 nm.

5. Verificação da especificidade antigênica

Os soros imunes de coelhos foram obtidos na Seção de Bacteriologia do Instituto Adolfo Lutz, que informou terem títulos aglutinantes, para o antígeno usado na sua produção, considerados satisfatórios.


O antígeno correspondente a cada um dos grupos de *N. meningitidis* foi posto em presença dos vários soros imunes e feita separadamente a reação de imunoeletroforese cruzada³ (I.E.C.) e a de hemaglutinação passiva⁷ (H.P.). No caso do grupo C, foi também utilizada como padrão a vacina polissacarídeo C **.

RESULTADOS

A figura abaixo mostra o resultado da passagem do antígeno de *N. meningitidis*, grupo C, por coluna de Sephadex G-200, onde foram obtidos dois picos de proteínas e um pico de ácido siálico coincidente com o primeiro pico de proteína. Esta fração

^{*} Sigma

^{**} Merck Sharp & Dohme.

rica em ácido siálico encontra-se logo após o volume vazio da coluna, sugerindo um componente de peso molecular maior que 100.000 dáltons.

Na tabela 1 estão os vários componentes químicos dos diferentes antígenos. Avaliando-se a tabela, verifica-se que em todos os antígenos a fração polissaca-

TABELA 1

Características químicas dos polissacarídeos extraídos de Neisseria meningitidis.

Neisseria	Polissacarídeos características químicas					
meningitidis Grupo	Acido siálico mg%	siálico Proteínas		Lipídios		
A		26 — 72	14 — 33			
В	28	35 — 310	9 50			
C	23,8 — 86	100 250	13,5 20,5			
D	*******	12,5 85	20 — 32,5			
29 E	20,5	53,5 — 77	23 89			
X		26,5 — 110	13 — 45			
Y	6 — 13,2	23 32	26	******		
\boldsymbol{z}	- Approximate to the contract of the contract	23 - 100	13 - 35	armay.		

- = Negativo

rídica continha proteínas. Nos grupos B, C, 29 E e Y foi constatada a presença do ácido siálico como compoente do polissacarídeo. Em nenhuma das preparações foi verificada a presença de lipídeos, aos níveis de sensibilidade da reação com sulfovanilina.

Os resultados da reação I.E.C. estão esquematizados na tabela 2. As reações sempre foram positivas quando se usou o anti-soro correspondente.

Reações cruzadas só ocorreram com os antígenos $B \in D$ frente aos anti-soros $Z \in C$ respectivamente.

Na tabela 3 estão esquematizadas as reações H.P. com hemácias sensibilizadas pelos vários antígenos frente aos anti-soros correspondentes, onde se verifica aparentemente não ter havido sensibilização das hemácias em presença dos antígenos D e Z; com os outros anti-soros as reações foram positivas, sem ocorrerem reações cruzadas.

DISCUSSÃO

Apesar de os volumes de cultura semeados terem sido sempre os mesmos, bem como o inóculo inicial, as variações de crescimento foram bem grandes (de 6×10^8 a 3×10^9 bactérias/ml). Essa variação pode ter importância, pois determina maior ou menor rendimento nas extrações de antígeno.

As reações sorológicas efetuadas permitem evidenciar que os grupos B, C, 29 E e Y são entidades antigênicas distintas, apesar de apresentarem um componente comum — o ácido siálico. Com relação ao Grupo A, GOSCHLICH et alii já havia demonstrado que não possui ácido siálico, sendo o seu principal componente polissacarídeo a N-acetil monosamina fosfato.

As reações de hemaglutinação passiva mostram que os polissacarídeos obtidos foram capazes de sensibilizar hemácies frescas, com exceção dos de grupos D e Z. Esse fato pode ser devido a problemas de conformação molecular do complexo proteína-polissacarídeo, ou bloqueio de grupamentos do polissacarídeo importantes para a ligação com as hemácias, ou mesmo bloqueio ou ausências de receptores nas próprias hemácias, uma vez que os polissacarídeos D e Z contêm hexoses e proteínas em quantidades semelhantes às dos outros antígenos estudados.

CARBONARE, S. B.; TAKEDA, A. K.; JORDÃO, F. B. M. & TAUNAY, A. E. — Especificidade imunológica dos polissacarídeos extraídos de diferentes grupos de Neisseria meningitiais. Rev. Inst. Adolfo Lutz, 34: 119-125, 1974.

TABELA 2

Reação de imunoeletroforese cruzada entre polissacarídeos extraídos de vários grupos de N. meningitidis e anti-soros de coelho específicos para cada grupo.

Anti-soro Antigeno	A	В	С	D	29 E	х	Y	Z
A	+-				_	_		
В		+				_		+
C	_		+		_		_	_
D	_		+	+	_			_
29 E	···-	_		_	+			_
X		v				+	_	
Y				_			+	
\mathbf{z}					_	_		+
			'				-	i

^{– =} Negativo

TABELA 3

Titulos obtidos na reação de hemaglutinação passiva entre polissacarídeos extraídos dos vários grupos de Neisseria meningitidis e anti-soros de coelho específicos para cada grupo.

Anti-soro Antígeno	A	В	C	D	29 E	X	Y	Z
A	32.000	-	_					
В		64	<u></u>					
C		-	512		_			
D		p	7/					
29 E				*****	128		p	
x	rr		wr		-	32		
\mathbf{Y}	*						8.000	
\boldsymbol{z}	-				-			_

^{- =} Negativo

Diluições iniciais

Anti-soro A = 1:32

Outros anti-soros = 1:16

^{+ =} Positivo

CARBONARE, S. B.; TAKEDA, A. K.; JORDAO, F. B. M. & TAUNAY, A. E. — Especificidade imunológica dos polissacarideos extraídos de diferentes grupos de Neisseria meningitidis. Rev. Inst. Adolfo Lutz, 34: 119-125, 1974.

Na tabela 3 pode-se verificar que a reação H.P. é altamente específica para detecção de anticorpos no soro, não havendo reações cruzadas entre os diferentes grupos.

As reações de I.E.C. também foram específicas para cada grupo, apenas os antígenos B e D reagiram positivamente com os anti-soros Z e C, respectivamente; no entanto, as reações inversas não ocorreram, ou seja, antígeno Z e C com antisoros B e D não reagiram. Este aparente paradoxo pode ser explicado levando-se em conta que todas as preparações polissacarídicas estavam contaminadas com uma fração protêica, sendo que, no fracionamento em coluna do antígeno C, parte desta proteína revelou-se associada ao polissacarídeo. Como já ficou revelado largamente na literatura, a porção polissacarídica das Neisseria é grupo-específica, o mesmo não ocorrendo com a fração protêica, pois existem algumas frações protêicas comuns a vários grupos destas bactérias.

Provavelmente os polissacarídeos B e D estão contaminados com proteínas comuns a Z e C respectivamente. Como os anti-soros de coelho são preparados contra a bactéria total e não apenas contra a fração polissacarídica, provavelmente as reações cruzadas são devidas a proteínas e não ao polissacarídeo.

Essa fração protêica eventualmente poderia ser eliminada através de uma hidrólise enzimática proteolítica.

CONCLUSÃO

Diante desses resultados, pode-se concluir que os antígenos polissacarídeos extraídos pelo método empregado neste trabalho, quando sensibilizam hemácias, podem ser usados para fins diagnósticos, uma vez que são grupo-específicos para as Neisseria.

RIAL-A/407

CARBONARE, S. B.; TAKEDA, A. K.; JORDÃO, F. B.M. & TAUNAY, A. E. Immunological specificity of polysaccharides obtained from different groups of *Neisseria meningitidis*. Rev. Inst. Adolfo Lutz, 34: 119-125, 1974.

SUMMARY: Polysaccharides obtained from eight Neisseria meningitidis serogroups were studied with respect to their immunological specificity. Antigen was obtained from liquid medium cultures by means of precipitation made with Cetavion (cetyl-triemethyl ammonium bromide).

The immunological specificity of such polysaccharides was studies by means of counterimmunoelectrophoresis and haemagglutination assays. The sera employed in this assays was obtained from rabbits immunized with *Neisseria meningitidis* of A, B, C, D, 29E, X, Y and Z groups. No cross-reactions were observed among any of the polysaccharides here obtained.

DESCRIPTORS: Neisseria meningitidis; polysaccharides from Neisseria meningitidis, immunological specificity.

CARBONARE, S. B.; TAKEDA, A. K.; JORDAO, F. B. M. & TAUNAY, A. E. — Especificidade imunológica dos polissacarídeos extraídos de diferentes grupos de Neisseria meningitidis. Rev. Inst. Adolfo Lutz, 34: 119-125, 1974.

REFERÊNCIAS BIBLIOGRÁFICAS

- GOTSCHLICH, E. C.; LIU, T. Y. & ARTENS-TEIN, M. S. — Human immunity to the meningococcus. III. Preparation and immunochemical properties of the group A. J. exp. Med., 129: 1349-65, 1969.
- LOWRY, O. H.; ROSEBROUGH, N. J.; FARR. A. L. & RANDALL, R. J. — Protein measurement with the Folin phenol reagent. J. biol. Chem., 193: 265-75, 1951.
- PALHARES, M.; GELLI, S. S.; ALMEIDA, M. C. R.; MELLES, C. E. A.; TAKEDA, A. K. & TAUNAY, A. E. Pesquisa de polissacarídeos de Neisseria meningitidis do grupo C no líquido cefalorraquidiano por imunoeletroforese cruzada em acetato de celulose. Rev. Inst. Adolfo Lutz, 33: 85-9, 1973.

- SCOTT, T. A. & MELVIN, E. H. Determination of dextran with anthrone. Analyt. Chem., 25: 1656-61, 1953.
- SVENNERHOLD, L. Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochem. biophys. Acta, 24: 604-611, 1957.
- ZOELLNER, N. & KIRSCH, K. Uber die quantitative Bestimmung von Lipoiden (Mikromethode) mitteis der vielen naturlischen Lipoiden (allen beanten Plasmalipoden) gemeinsamen sulfophosphovanllin Reaktion. Z. ges. exp. Med., 135: 545, 1962.
- TAKEDA, A. K.; TAUNAY, A. E.; SCALABRINI, L. G. P. & CASTRO, I. O. — Anticorpos antipolissacarídeo C de Neiseria meningitidis: detecção através da hemaglutinação passiva em soros de pacientes e de vacinados. Rev. Inst. Adolfo Lutz, 34: 127-133, 1974.

Recebido para publicação em 7 de outubro de 1974.

