Alguns aspectos do controle populacional e da resistência a inseticidas em Aedes aegypti (Diptera, Culicidae)

Autores

  • Marluci Monteiro Guirado Instituto de Biociências, Letras e Ciências Exatas. Universidade Estadual Paulista “Júlio de Mesquita Filho”. São José do Rio Preto, SP, Brasil
  • Hermione Elly Melara de Campos Bicudo Instituto de Biociências, Letras e Ciências Exatas. Universidade Estadual Paulista “Júlio de Mesquita Filho”. São José do Rio Preto, SP, Brasil

Palavras-chave:

Aedes aegypti, problemas de controle, perspectivas

Resumo

A dengue, na forma clássica ou hemorrágica, uma das doenças transmitidas pelo mosquito Aedes aegypti, é um importante problema de saúde pública. Atualmente, a área de ocorrência, bem como o número de pessoas afetadas pela doença, vem aumentando paralelamente à preocupação com o seu controle. Os esforços para produzir uma vacina efetiva na prevenção da dengue ainda não mostraram o sucesso desejado. Ao mesmo tempo, métodos para o controle do tamanho das populações utilizando técnicas genéticas modernas, como a construção de mosquitos transgênicos portadores de características apropriadas, ainda permanecem em estudo laboratorial. Assim, enquanto outros processos não estiverem disponíveis, o controle do mosquito estará quase exclusivamente dependente da conscientização das populações humanas na eliminação dos criadouros em potencial. Alguns aspectos e problemas envolvidos nesse assunto são abordados no presente texto.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

World Health Organization - WHO. Dengue and dengue hemorrhagic fever [acesso em: 6 jul 2008]. Disponível em: http://www.who.int/ mediacentre/factsheets/fs117/en/.

Figueiredo RMP, Naveca FG, Bastos MS, Melo MN, Viana SS, Gomes MP, et al. Dengue virus type 4, Manaus, Brazil. Emerg Infect Dis [periódico na internet]. 2008 abr [acesso em 16 jun 2008]; 14(4). Disponível em: http://www.cdc.gov/ EID/content/14/4/667.htm.

Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu Z, et al. Genome sequence of Aedes aegypti, a major arbovirus vector. (research article) (Clinical report). Science. 2007;316: 1718-23.

Severson Lab Home. The Severson Aedes aegypti genome project. VectorBase [acesso em 20 set 2007]. Disponível em: http://www.nd.edu/ ~dsevervo/genome.html.

Jasinskiene NJ, Coates CJ, Benedict MQ, Comel AJ, Rafferty CS, James AA, Collins FH. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc Nat Acad Sci USA. 1998;95:3748-51.

Franz AW, Sanchez-Vargas I, Adelman ZN, Blair CD, Beaty BJ, James AA, Olson KE. Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc Nat Acad Sci USA. 2006;103: 4198-4203.

Marrelli MT, Li C, Rasgon J, Jacobs-Lorena M. Transgenic malaria-resistant mosquitoes have a fitness advantage when feeding on plasmodiuminfected blood. Proc Nat Acad Sci USA. 2007;104:5580-83.

Oliveira, W. 2006. O desafio dos mosquitos trangênicos [acesso em: 14 jul 2008]. Disponível em: http://www.fiocruz.br/ccs/ cgi/cgilua.exe/sys/start.htm?from_info_index= 101&infoid=112&sid=3.

Brasil. 2006. Brasil pode ter vacina contra a dengue em até 10 anos [acesso em: 13 jul 2008]. Disponível em: http://www.bonde.com.br/ bonde.php?id_bonde=1-3--74-20060203.

Rodrigues, P. 2007. Vacina contra dengue pode rá e s t a r di sponíve l em qua t ro anos. Brasí l ia: Agência Brasi l ; 2007 [acesso em: 13 jul 2008]. Disponível em: h t t p : / /www. a g e n c i a b r a s i l . g o v. b r / noticias/2007/10/25/materia.2007-10- 25.4702907947/view.

Rio: secretaria confirma 152 mortes por dengue [reportagem na internet]. Rio de Janeiro: JB Online; 2008 [acesso em 9 jul 2008] . Disponível em: ht tp:// not i c ias . ter ra. com.br/bras i l/interna/ 0,,OI2999595-EI715,00.html.

Marzochi KBF. Dengue in Brazil – Situation, transmission and control: a proposal for ecological control. Mem Inst Oswaldo Cruz. 1994;89:235-45.

Queiroz ML, Fernandes SMD, Valadares MC. Neutrophil function in workers exposed to organophosphate and carbamate insecticides. Int e rna t i ona l . J Immunopha rma c o l . 1999;21:263-70.

Macoris MLG, Camargo MF, Silva IG, Takaku L, Andrighetti MTM. Modificação da susceptibilidade de Aedes (Stegomyia) aegypti ao temefós. Rev Pathol Trop. 1995;24:31-40.

Macoris MLG, Andrighetti MTM, Takaku L, Glasser CM, Garbeloto VC, Cirino VCBL. Alteração de resposta de susceptibilidade de Aedes aegypti a inseticidas organofosforados em municípios do Estado de São Paulo, Brasil. Rev Saúde Pública. 1999;33:521-2.

Macoris MLG, Andrighetti MTM, Takaku L, Glasser CM, Garbeloto VC, Bracco JE. Resistance of Aedes aegypti from the state of São Paulo, Brazil, to organophosphates insecticides. Mem Inst Oswaldo Cruz. 2003;98:703-8.

Carvalho MSL, Caldas ED, Degallier N, Vilarinhos PTR, Souza LCKR, Yoshizawa MAC, et al. Suscetibilidade de larvas de Aedes aegypti ao inseticida temefós no Distrito Federal. Rev Saúde Pública. 2004;38:623-9.

Lima JBP, Da-Cunha MP, Da Silva RCJ, Galar DO, Soares SDS, Braga IA, et al. Resitance of Aedes aegypti to organophosphates in several municipalities in the State of Rio de Janeiro and Espirito Santo, Brazil. Am J Trop Med Hyg. 2003;68:329-33.

Lima EP, Oliveira Filho AM, Lima JWO, Ramos Júnior NA, Cavalcanti LPG, Pontes RJS. Resistência do Aedes aegypti ao temefós em municípios do Estado do Ceará (Aedes aegypti resistance to temephos in countries of Ceara State). Rev Soc Bras Med Trop. 2006;39:259-63.

Mouchet J, Chastel C. Resistance to insecticides in Aedes aegypti L. and Aedes albopictus in Phnom-Penh (Cambodia) . Med Trop. 1966;26:505-15.

Rawlins SC. Spatial distribution of insecticide resistance in Caribbean populations of Aedes aegypti and its significance. Rev Pan Salud Publica. 1998;4:243-51.

Rodriguez MM, Bisset J, Fernandez DM, Lauzan L, Soca A. Detection of insecticide resistance in Aedes aegypti. (Diptera: Culicidae) from Cuba and Venezuela. J Med Entomol. 2001;38:623-8.

Ocampo CB, Wesson DM. Population dynamics of Aedes aegypti from a dengue hyperendemic urban setting in Colômbia. Am J Trop Med Hyg. 2004;71:506-13.

Jirakanjanakit N, Rongnoparut P, Saengtharatip S, Chareonviriyaphap T, Duchon S, Bellec C, Yoksan S . Insecticide susceptible resistance status in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Theiland during 2003-2005. J Econ Entomol. 2007;100:45-50.

Berry C, Hindley J. Bacillus sphaericus strain 2362: identification and nucleotide sequence of the 41.9 kDa toxin gene. Nucleic Acids Res. 1987;15:758-64.

Vallejo F, González A, Posada A, Restrepo A, Orduz S. Production of Bacillus thuringiensis subsp. medellin by batch and fed-batch culture. Biotechnol Techn. 1999;13:1573-84.

Regis L, Silva SB, Melo-Santos MA. The use of bacterial larvicides in mosquito and black fly control programmes in Brazil. Mem Inst Oswaldo Cruz. 2000;95:207-10.

Melo-Santos MA, Sanches EG, Jesus FJ, Regis, L. Evaluation of a new tablet formulation based on Bacillus thuringiensis sorovar. israelensis for larvicidal control of Aedes aegypti. Mem Inst Oswaldo Cruz. 2001;96:859-60.

Polanczyk RA, Garcia MO, Alves SB. Potential of Bacillus thuringiensis israelensis Berliner for controlling Aedes aegypti. Rev Saúde Pública. 2003; 37: 813-816.

Gunasekaran K, Doss PS, Vaidyanathan K. Laboratory and field evaluation of Teknar HPD, a biolarvicidal formulation of Bacillus thuringiensis ssp. israelensis, against mosquito vectors. Acta Trop. 2004;92:109-18.

Reyes-Villanueva F. El dengue. Bionomía del vector, transmisión y opciones para su control en México. Ciência. 1990;41:45-55.

Becker N, Zgomba M, Ludwig M, Petric D, Rettich, F. Factors influencing the activity of Baci l lus thuringiens i s var. i sraelens i s treatments. J Am Mosq Control Assoc. 1992;8(3):285-9.

Obeta JA. Effect of inactivation by sunlight on the larvicidal activities of mosquitocidal Bacillus thuringiensis h-14 isolates from nigerian soils. J Commun Dis. 1996;28:94-100.

Yu-Tien L, Meng-Jiun S, Dar-Der J, I-Huan W, Chin-Chi C, Cheng-Chen C. Protection from ultraviolet irradiation by melanin of mosquitocidal activity of Bacillus thuringiensis var. I s raelens i s . J Inver tebr Pathol . 1993;62:131-36.

Vilarinhos PTR, Monnerat R. Larvicidal percistence of formulations of Bacillus thuringiensis var. israelensis to control larval Aedes aegypti. J Am Mosq Control Assoc. 2004;20:311-14.

Goldman IF, Arnold J, Carlton BC. Selection for resistance to Bacillus thuringiensis subspecies israelensis in field and laboratory populations of the mosquito Aedes aegypti. J Invertebr Pathol. 1986;47:317-24.

Neppl CC. Management of resistance to Bacillus thuringiensis toxins [monografia na internet]. Chicago; 2000 [acesso em 23 j a n 2 0 0 8 ] . Di s p o n íve l em: h t t p : / / camillapede.tripod.com/bapaper.html.

Paul A, Harrington LC, Zhang L, Scott JG. Insecticide Resistance in Culex pipiens from New York. J Am Mosq Control Assoc. 2005;21:305-9.

Diniz F. 2008. Inseticida biológico desenvolvido pela Embrapa é usado com sucesso no combate da dengue [informativo eletrônico]. Jornal Agrosoft; 2008 [acesso em 14 jul 2008] Disponível em: www.agrosoft.org.br/?q=node/ 100390.

Laranja AT, Manzato AJ, Bicudo HEMC. Effects of caffeine and used coffee powder on biological features of Aedes aegypti (Diptera, Culicidae) and their possible use in alternative control. Genet Mol Biol. 2003;26:419-29.

Laranja AT, Manzato AJ, Bicudo HEMC. Caffeine effect on mortality and oviposition in successive generations of Aedes aegypti. Rev Saúde Pública. 2006;40:1112-7.

Guirado MM, Bicudo HMEC. Effect of used coffee grounds on larval mortality of Aedes aegypti L. (Diptera: Culicidae): suspension concentration and age versus efficacy. Rev Bio Assay. 2007;2:1-7.

Guirado MM. Outros aspectos do efeito da cafeína e da borra do café em Aedes aegypti [dissertação de mestrado]. São José do Rio Preto: Universidade Estadual Paulista; 2004.

Fiocruz cria novo larvicida contra dengue [reportagem na internet]. Rio de Janeiro: Globo.com 2008 [acesso em: 3 jul 2008]. Disponível em: ht tp://g1.globo.com/ Noticias/Rio/0,,MUL373360-5606,00.html.

Talamoni D. Spray no Aedes. Revista Vida Saúde [periódico na internet]. 2007 nov [acesso em: 9 jul 2008]. Disponível em: http://revistavivasaude.uol.com.br/Edicoes/5 5/artigo65655-1.asp-.

Paraná, 2004. Extrato alcoólico de frutos de cinamomo mata larvas do mosquito da dengue [reportagem na internet]. Ecoviagem, 2004 jan [acesso em 9 jul 2008]. Disponível em: ht tp: / /www. e c ov i a g em. c om.br / f ique-por -dent ro/not i c ias/ambiente/ extrato-alcoolico-de-frutos-de-cinamomomata- larva-do-mosquito-da-dengue-3760.asp.

Nogueira, D. Receita contra as larvas do mosquito. O Povo Online, 2008 mai [acesso em 9 jul 2008]. Disponível em: http:// www.opovo. com.br/opovo/for taleza/ 790387.html.

Barros, V. Aroeira e moringa usadas no combate à dengue [reportagem na internet]. Recife: Ascom/UFPE, jan 2008 [acesso em: 9 jul 2008]. Disponível em: http://www.ufpe.br/new/ visualizar.php?id=7366.

Kamaraj C, Rahuman AA, Bagavan A. Antifeedant and larvicidal effects of plant extracts against Spodoptera litura (F.), Aedes aegypti L. and Culex quinquefasciatus Say. Parasitol Res. 2008;103:325-31.

Odda J, Kristensen S, Kabasa J, Waako P. Larvicidal activity of Combretum collinum Fresen against Aedes aegypti. J Vector Borne Dis. 2008;45:321-4.

Maleck M, Alencar J, Guimarães AE, Kato MJ. Larvicidal activity of grandisin from Piper solmsianum against Aedes aegypti. J Am Mosq Control Assoc. 2009;25:103-5.

Slosek J. Aedes aegypti mosquitoes in the Americas: a review of thei interactions with the human population. Soc Sci Med. 1986;23: 249-57.

Georghiou GP, Taylor C.E. Genetic and biological influences in the evolution of insecticide resistance. J Econ Entomol. 1977;70:319-23.

Rawlins SC, Wan JOHW. Resistance in some Caribbean populations of Aedes aegypti to several insecticides. J Am Mosq Control Assoc. 1995;11:59-65.

Beserra EB, Fernandes RM, Queiroga MFC, Castro Jr FP. Resistência de populações de Aedes aegypti (L) (Díptera: Culicidae) ao orgnofosforado temefós na Paraíba. Neotrop Entomol. 2007;36:303-7.

Montella IR, Martins AJ, Viana-Medeiros A, Lima JBP, Braga IA, Valle D. Resistance mechanisms of Brazilian Aedes aegypti populations from 2001 to 2004. Am J Trop Med Hyg. 2007;77:467-77.

Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Annu Rev Entomol. 2000;45:371-91.

Poirié M, Raymond M, Pasteur N. Identification of two distinct amplifications of the esterase B locus in Culex pipiens (L.) mosquitoes from mediterranean countries. Biochem Genet. 1992;30:13-26.

Priester TM, Georghiou GP. Penetration of permethrin and knockdown in larvae of pyrethroid-resistant and pyrethroidsusceptible strains of the sputhern house mosquito Diptera, Culicidae. J Econ Entomol. 1980;73:165-67.

Carino FA, Kopener JF, Plapp FW, Feyreisen R. Constitutive overexpression of the cytochrome P450 gene CYP6A1 in a house fly strain with metabolic resistance to insecticides. Insect Biochem Mol Biol. 1994; 24: 411-418.

Raymond M, Chevillon C, Guillemaud T, Lenormand T, Pasteur N. 1998 An overview of the evolution of overproduced esterases in the nosquito Culex pipiens. Phil Trans R Soc B. 1998;353:1707-11.

Mute ro A, Pra l avor io M, Br ide JM, Fournier D. Resistance-associatedpoint mutat ions in insec t i c ide- insens i t ive acetylcholinesterase. Proc Nat Acad Sci USA. 1994; 91: 5922-5926.

Bisset JA, Rodriguez MM, Fernandez D. Selection of insensitive acetylcholinesterase as a resisteance mechanism in Aedes aegypti (Díptera, Culicidae) from Santiago de Cuba. J Med Entomol. 2006;43:1185-89.

Lockwood JA, Byford RL, Stori RH, Sparks TC, Quisenberry SS. Behavioral resistance to the pyrethroids in the horn fly, Haematobia irritans (Diptera, Muscidae). Environ Entomol. 1985; 14: 873-880.

Mouchès C, Pauplin Y, Agarwal M, Lemieux L, Herzog M, Abadon M, et al. Characterization of amplification core and esterase B1 gene responsible for insecticide resistance in Culex. Proc Nat Acad Sci USA. 1990;87:2574-8.

Guillemaud T, Makate M, Raymond M, Hirst B, Callaghan A. Esterase gene amplification in Culex pipiens. Insect Mol Biol. 1997;6: 319-27.

Campbell PM, Trott JF, Claudianos C, Smyth KA, Russel RJ, Oakeshott JG. Biochemistry of esterases associated with organophosphate resistance in Lucilia cuprina with comparisons to putative orthologues in other Diptera. Biochem Genet. 1997;35:17-40.

Hemingway J, Karunaratne SHPP. Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Med Vet Entomol. 1998;12:1-12.

Claudianos C, Russel RJ, Oakeshott JG. The same amino acid substitution in orthologous esterases confers organophosphate resistance on the house fly and a blowfly. Insect Biochem Mol Biol. 1999; 29:675-86.

Blackman RL, Spence JM, Field LM, Devonshire AL. Variation in the chromosomal distribution of amplified esterase (FE4) genes in greek field populations of Myzus persicae (Sulzer). Heredity. 1999;82:180-6.

Brogdon WG, Mcallister J, Corwin AM, Cordon-Rosales C. Independent selection of mul t iple mechanisms for pyrethroid res i s tance in guatemalan Anophel es albimanus (Diptera: Culicinae). J Econ Entomol. 1999;92:298-302.

Oakeshott JG, Van Parencht EA, Boyce TM, Healy MJ, Russel RJ. Evolutionary genetics of Drosophila esterases. Genetica. 1993; 90: 239-268.

Anthony NM, Rocheleau TA, Mocellin G, Lee H-L, French-Constant RH. Cloning, sequencing and functional expression of an acetylcholinesterase gene from yellow fever mosquito Aedes aegypti. FEBS Letters. 1995;368:461-5.

Kosaki T, Shono T, Kono Y. Fenitroxon insensitive acetylcholinesterases of the housefly, Musca domestica associated with point mutations. Insect Biochem. Mol. Biol. 2001; 31: 991-997.

Weill MCM, Chandre F, Mongensen K, Berthomieu A, Marquine M, Raynmond M. The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol Biol. 2004;13:1-7.

HSU C, Haymer DS, Wu W, Feng H. Mutations in the acetylcholinesterase gene of Bactrocera dorsalis associated with resistance to organophosphorus insecticides. Insect Biochem Mol Biol. 2006;36:396-402.

Field LM, Blackman RL, Tyler-Smith C, Devonshire AL. Relationship between amount of esterase and gene copy number in insecticideresistant Myzus persicae (Sulzer). Biochem J. 1999;339:737-42.

Gao JR, Yoon KS, Richard K, Gerald C, Marshall J, Clark F. Esterase-mediated malathion resistance in the human head louse, Pediculus capitis (Anoplura: Pediculidae). Pestic Biochem Physiol. 2006;l85:23-37.

Lima-Catelani ARA, Ceron CR, Bicudo HEMC. Genetic variation during development, revealed by esterase patterns of Aedes aegypti (Diptera, Culicidae). Biochem Genet. 2004;42:69-84.

Sousa-Polezzi RC, Bicudo HEMC. Genetic variation along time in a Brazilian population of Aedes aegypti (Diptera: Culicidae), detected by changes in the esterase patterns. Genetica (The Netherlands). 2005;125:43-53.

Guirado MM. Padrões de esterases em populações resistentes e suscetíveis de Aedes aegypti (Diptera, Culicidae) [tese de doutorado]. São José do Rio Preto: Universidade Estadual Paulista; 2008.

Downloads

Publicado

2009-04-30

Como Citar

1.
Monteiro Guirado M, Elly Melara de Campos Bicudo H. Alguns aspectos do controle populacional e da resistência a inseticidas em Aedes aegypti (Diptera, Culicidae). Bepa [Internet]. 30º de abril de 2009 [citado 20º de maio de 2024];6(64):5-14. Disponível em: https://periodicos.saude.sp.gov.br/BEPA182/article/view/38614

Edição

Seção

Artigos de Revisão sistemática/metanálise