Resumo
O objetivo do presente estudo foi quantificar, isolar e identificar a micobiota toxigênica em camarões marinhos cultivados no litoral do Piauí. Foram selecionadas, randomicamente, quatro propriedades (“A”, “B”, “C” e “D”), de onde foram coletadas 84 amostras de camarão de três fases de cultivo: “I”, “II” e “III”. A contagem de fungos foi realizada em ágar dicloran rosa de bengala cloranfenicol. As colônias isoladas de Aspergillus e Penicillium spp foram transferidas para tubos contendo ágar extrato de malte. As contagens de fungos nas amostras de camarões coletadas variaram de 1,85 a 2,73 UFC/g log10 e não diferiram entre si em todas as fases de cultivo. Foram isoladas 64 cepas de fungos, e os gêneros mais prevalentes foram Aspergillus (34,4%) e Penicillium (25,0%). Foram identificadas dezoito cepas do gênero Aspergillus. Duas cepas de A. ochraceus e cinco cepas de A. agregados niger foram produtoras de ocratoxina A. Uma cepa de A. flavus produziu aflatoxina B1, B2, G1 e G2, respectivamente, nas concentrações de 14,8 ng/g, 4,3 ng/g, 2,6 ng/g e 1,1 ng/g, e foi classificada como A. flavus atípico. Os camarões cultivados no litoral piauiense, quando recentemente capturados, apresentaram baixas contagens fúngicas em todas as fases de cultivo.Referências
1. ABCC. Associação Brasileira de Criadores de Camarão. Censo da produção anual de 2004. [Acesso 2011 set 24]. Disponível em: [http:// www.abccam.com.br/censo_2010].
2. Moraes AM. Agronegócio do camarão no Piauí. Carta CEPRO. 2001;20(3):7-12.
3. Franco BDGM, Landgraf M. Microbiologia dos alimentos. São Paulo: Atheneu; 2008. 182p.
4. ICMSF. Internacional Comission on Microbiological Specifications for Foods. Microrganismos de los alimentos: características de los patógenos microbiano. Zaragoza: Acribia; 1996.
5. Brasil. Ministério da Saúde. Resolução RDC nº 12, de 2 de janeiro de 2001. Aprova o regulamento técnico sobre padrões microbiológicos para alimentos. Diário Oficial [da] República Federativa do Brasil. Brasília (DF); 10 jan 2001; Seção 1(7-E):45-53.
6. Pereira MMG, Carvalho EP, Prado G. Crescimento e produção de aflatoxinas por Aspergillusflavus e Aspergillus parasiticus. Bol CEPPA. 2002;20(1):141-56.
7. Pereyra CM, Cavaglieri LR, Chiacchiera SM, Dalcero AM. Fungi and mycotoxins in feed intended for sows at different reproductive stages in Argentina. Vet Med Int. 2010;01:1-7.
8. Ritter AC, Noll IB. Diferentes pré-inóculos, temperaturas e tempos de incubação na produção aflatoxina B1 em arroz. Cienc Rural. 2008;38(9):2552-6.
9. Pitt JI, Hocking AD. Fungi and Food Spoilage. 3. ed. Londres: Springer Dordrecht Heidelberg; 2009.
10. Reis JA, Hoffmann P, Marcos LM, Taddei FG, Gonçalves TMV, Hoffmann FL. Estudo higiênico-sanitário dos camarões dulcícolas Macrobrachium amazonicum e M. jelskii. Hig Aliment. 2004;18(116/117):57-8.
11. Lin MT, Dianese JC. A coconut-agar medium rapid detection of aflatoxin production by Aspergillus spp.Phytopathol. 1976;66:1466-9.
12. Yousefi S, Dadgar S, Safara M, Zaini F. Aflatoxin production by Aspergillus flavus isolates from green-tiger shrimps (Penaeus semisulcatus). Iran J Microbiol. 2009;01(4):18-22.
13. Filtenborg O, Frisvad JC. A simple screening: method for toxigenic moulds in pure cultures. Lebensmittel Wissenschaft und Technologie. 1980;13:128-30.
14. Saito M, Tsuruta O. A new variety of Aspergillusflavus from tropical soil in Thailand and its aflatoxin productivity. Proc Jpn Assoc Mycotoxicol. 1993;37:31-6.
15. Geiser DM, Pitt JI, Taylor JW. Cryptic speciation and recombination in the aflatoxin producing fungus Aspergillus flavus. Proc Natl Acad Sci. 1998;95:388-93.
16. Tran-Dinh N, Pitt JI, Carter DA. Molecular genotype analysis of natural toxigenic and nontoxigenic isolates of Aspergillus flavusand A. parasiticus. Mycol Res. 1999;103(11):1485-90.
17. Pildain, MB, Vaamonde G, Cabral D. Analysis of population structure of Aspergillusflavus from peanut based on vegetative compatibility, geographic origin, mycotoxin and sclerotia production. Int J Food Microbiol. 2004;93:31-40.
18. Barros G, Torres A, Chulze S. Aspergillusflavus population isolated from soil of Argentina’s peanut-growing region. Sclerotia production and toxigenic profile. J Sci Food Agricult. 2005;85(14):2349-53.
19. Perrone G, Susca A, Cozzi G, Ehrlich K, Varga J, Frisvad JC, et al. Biodiversity of Aspergillus species in some important agricultural products. St Mycol. 2007;59:53-66.
20. Dalcero A, Magnoli C, Chiacchiera S, Palacios G, Reynoso M. Mycoflora and incidence of afaltoxin B1, zearalenone and deoxynivalenol in poultry feeds in Argentina.Mycopathol. 1997;137(3):179-84.
21. Klich MA. A laboratory guide to the common Aspergillus species and their teleomorphs. Sidney: CSIRO – Division of Food Processing; 2002.
22. Geisen, R. Multiplex polymerase chain reaction for the detection of potential aflatoxin and sterigmatocystin producing fungi. J Off Appl Microbiol. 1996;19:388-92.
23. Trucksess MW, Stack ME, Nesheim S, Albert RH, Romer TR. Multifunctional column coupled with liquid chromatography for determination of aflatoxins B1, B2, G1, G2 in corn, almonds, Brazil nuts, peanuts and pistachionuts: collaborative study. J AOAC Int. 1994;6:1512-21.
24. Bragulat MR, Abarca ML, Cabañes FJ. An easy screening method for fungi producing ochratoxin A in pure culture. Int J Food Microbiol. 2001;71:139-44.
25. Nesheim S, Hardin NF, Francis OJ, Langham WS. Analysis of ochratoxin A and B and their esters in barley: using partitions and thin-layer chromatography. I Development of the method. J AOAC Int. 1973;56:817-21.
26. Sigma Stat for windows version 1.0. Jandel Corporation; 2000.
27. Varga J, Frisvad JC, Samson RA. Two new aflatoxin producing species, and an overview of Aspergillus section Flavi. St Mycol. 2011;69:57-80.
28. Gonçalves JS, Ferracin LM, Vieira MLC, Lamanaka BT, Taniwaki MH, Fungaro MHP. Molecular analysis of Aspergillus section Flavi isolated from Brazil nuts. World J Microb Biot. 2012;28(4):1817-25.
29. Santos YFM, Muratori MCS, Rosa CAR, Calvet RM, Nunes EMCG, Marques ALA, et al. Sobrevivência do Aspergillusspp in vivo e in vitro submetido a diferentes concentrações de metabissulfito de sódio e cloro usado no beneficiamento do camarão. In: XVIII Seminário de Iniciação Científica e I Seminário em Desenvolvimento Tecnológico e Inovação da UFPI; nov 2009; Teresina.
30. Veloso APB, Muratori MCS, Rosa CAR, Calvet RM, Nunes EMCG, Marques ALA, et al. Sobrevivência do Penicilliumspp in vivo e in vitro submetido a diferentes concentrações de metabissulfito de sódio e cloro usado no beneficiamento do camarão. In: XVIII Seminário de Iniciação Científica e I Seminário em Desenvolvimento Tecnológico e Inovação da UFPI; nov 2009; Teresina.
31. Patsoukis N, Georgiou CD. Effect of sulfite-hydrosulfite and nitrite on thiol redox state, oxidative stress and sclerotial differentiation of filamentous phytopathogenic fungi. Pestic Bio Physiol. 2007;88(2):226-35.
32. Jay JM. Microbiologia de alimentos. 6. ed. São Paulo: Artmed; 2005.
33. Villarreal-Cavazos DA, Barbosa CG, Ezquerra-Brauer JM, Scholz U, Cruz-Suárez LE, Ricque-Marie D. Efecto de las micotoxinas em la nutrición de camarones peneidos. In: VII Memorias del Simposium Internacional de Nutrición Acuícola, VII Avances em Nutrición Acuícola; 2004; Hermosillo. p. 463-479.
34. Calvet RM, Muratori MCS, Pereira MMG, Rosa CAR, Costa APR, Dalcero AM. Aflatoxinas B1 em ração de camarão cultivados no litoral do Piauí. In: IICongresso Latino-Americano de Analistas de Alimentos, VIII Encontro Nacional de Analistas de Alimentos; jun 2009; Belo Horizonte.
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Copyright (c) 2012 Rodrigo Maciel Calvet, Maria Marlúcia Gomes Pereira, Amilton Paulo Raposo Costa, Regina Célia de Jesus Fialho, Maria Christina Sanches Muratori