O uso das células-tronco nas doenças cardíacas
PDF (English)

Palavras-chave

células-tronco
infarto do miocárdio
doença de Chagas
terapia celular
regeneração cardíaca

Como Citar

1.
Comparsi FP, Wagner SC, Pranke P. O uso das células-tronco nas doenças cardíacas. Rev Inst Adolfo Lutz [Internet]. 1º de agosto de 2007 [citado 28º de abril de 2024];66(3):213-24. Disponível em: https://periodicos.saude.sp.gov.br/RIAL/article/view/32797

Resumo

As células-tronco são células indiferenciadas capazes de auto-renovação e de originar diversos tipos celulares. A doença cardiovascular é a causa mais importante de morte na sociedade ocidental e, apesar dos avanços terapêuticos da medicina tradicional, não tem sido possível recuperar a função cardíaca original. A doença de Chagas é também uma importante causa de insuficiência cardíaca na América Latina. A capacidade de diferenciação das células-tronco faz dessas uma importante fonte de células para a regeneração do tecido cardíaco. As pesquisas utilizando modelos animais com infarto do miocárdio têm mostrado resultados promissores através do uso das células-tronco para a terapia das doenças cardíacas. Recentes ensaios clínicos têm comprovado a segurança e os benefícios da terapia com células-tronco na regeneração cardíaca. No entanto, as pesquisas nesse campo ainda estão em estágios iniciais e necessitam ser consolidadas para permitir uma ampla utilização das células-tronco na medicina. Além disso, a terapia celular tem mostrado grande potencial como uma nova abordagem terapêutica para o tratamento das doenças cardíacas, as quais são responsáveis por tirar a vida de milhões de pessoas ao redor do mundo.
https://doi.org/10.53393/rial.2007.66.32797
PDF (English)

Referências

1. Kirschstein R, Skirboll LR. Stem cells: scientific progress and future research directions. NationalInstitutes of Health. http://stemcells.nih.gov/info/scireport. From June 17, 2001. Accessed August 23,2007.

2. Yamanaka S, Li J, Kania G, Elliott S, Wersto RP, VanEyk J, Wobus AM, Boheler KR. Pluripotency ofembryonic stem cells. Cell Tissue Res 2008; 331: 5-22.

3. Wang X, Willebring H, Akkari Y, et al. Cell fusion isthe principal source of bone-marrow-derivedhepatocytes. Nature 2003; 422: 897-901.

4. Abbott JD, Giordano FJ. Stem cells and cardiovascular disease. J Nucl Cardiol 2003; 10: 403-12.

5. Nicolau JC. Angina e cuidados pós-infarto do miocárdio. Manual de Condutas Médicas, 287-290. http://ids-saude.uol.com.br/psf/medicina/tema5/pdf/texto67.pdf. 2001.

6. RIPSA, Rede Interagencial de Informações para a Saúde. Indicadores e Dados Básicos para a Saúde, Brasil. http://tabnet.datasus.gov.br/cgi/idb2003/matriz.htm, 2003. Accessed August 23, 2007.

7. Dias JCP, Silveira AC, Schofield CJ. The impact of Chagas disease control in Latin America: a review. MemInst Oswaldo Cruz 2002; 97: 603-12.

8. Soares MBP, Pontes de Carvalho L, Santos RR. The pathogenesis of Chagas’ disease: when autoimmune and parasite-specific immune responses meet. An Acad Bras Cienc 2001; 73: 547-59.

9. Bocchi EA, Guimarães G, Bacal F, et al. Stem cellsmobilization treatment removing severe congestive heartfailure patients from heart transplantation indication -preliminary results. J Heart Lung Transplant 2003; 22:124 (Supplement 1) (Abstract).

10. Oh H, Taffer GE, Youker KA, et al. Telomerase reversetranscriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc Natl Acad Sc USA 2001;98: 10308-13.

11. Quaini F, Urbanek K, Beltrami AP, et al. ANVERSA, P. Chimerism of the Transplanted Heart. N Engl J Med2002; 346: 5-15.

12. Glaser R, Lu MM, Narula N, Epstein J. Smooth musclecells, but not myocytes, of host origin in transplantedhuman hearts. Circulation 2002; 106: 17-9.

13. Müller P, Pfeiffer P, Koglin J, et al. Cardiomyocytes ofnoncardiac origin in myocardial biopsies of humantransplanted hearts. Circulation 2002; 106: 31-5.

14. Laflamme MA, Myerson D, Saffitz JE, Murry CE. Evidence for cardiomyocyte repopulation byextracardiac progenitors in transplanted human hearts.Circ Res 2002; 90: 634-40.

15. Anversa P, Nadal-Ginard B. Cardiac chimerism: methods matter. Circulation 2002; 106: 129-31.

16. Oh H, Bradfute SB, Gallardo TD, et al. Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction. Proc NatlAcad Sc USA 2003; 100: 12313-8.

17. Kucia M, Dawn B, Hunt G, et al. Cells expressing earlycardiac markers reside in the bone marrow and aremobilized into the peripheral blood after myocardialinfarction. Circ Res 2001; 95: 1191-9.

18. Valgimigli M, Rigolin GM, Fucili A, et al. CD34+ andendothelial progenitor cells in patients with variousdegrees of congestive heart failure. Circulation 2004;110: 1209-12.

19. Werner N, Kosiol S, Schiegl T, et al. Circulatingendothelial progenitor cells and cardiovascularoutcomes. N Engl J Med 2005; 353: 999-1007.

20. Wojakowski W, Tendera M, Michalowska A, et al.Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing earlycardiac, muscle, and endothelial markers into peripheralblood in patients with acute myocardial infarction.Circulation 2004; 110: 3213-20.

21. Wu K, Liu YL, Cui B, Han Z. Application of stem cellsfor cardiovascular grafts tissue engineering. TransplImmunol 2006; 16: 1-7.

22. Orlic D, Kajstura J, Chimenti S, et al. Bone marrowcells regenerate infarcted myocardium. Nature 2001;401: 701-5.

23. Musil LS, Le ACN, Vanslyke JK, Roberts LM.Regulation of connexin degradation as a mechanism toincrease gap junction assembly and function. J BiolChem 2000; 275: 25207-15.

24. Orlic D, Kajstura J, Chimenti S, et al. Mobilized bonemarrow cells repair the infarcted heart, improvingfunction and survival. Proc Natl Acad Sc USA 2001;98: 10344-9.

25. Takano H, Qin Y, Hasegawa H, et al. Effects of G-CSF on left ventricular remodeling and heart failureafter acute myocardial infarction. J Mol Med 2006;84: 185-93.

26. Harada M, Qin Y, Takano H, et al. G-CSF preventscardiac remodeling after myocardial infarction byactivating the Jak-Stat pathway in cardiomyocytes. NatMed 2005; 11: 305-11.

27. Behfar A, Perez-Terzic C, Faustino RS, et al. Cardiopoietic programming of embryonic stem cellsfor tumor-free heart repair. J Exp Med 2007; 204(2):405-20.

28. Nussbaum J, Minami E, Laflamme MA, Virag JA, WareCB, Masino A, Muskheli V, Pabon L, Reinecke H, Murry CE et al. Transplantation of undifferentiated murineembryonic stem cells in the heart: teratoma formationand immune response. FASEB J 2007; 21(7): 1345-57.

29. Tomescot A, Leschik J, Bellamy V, et al. Differentiationin vivo of cardiac committed human embryonic stemcells in postmyocardial infarcted rats. Stem Cells 2007;25(9): 2200-5.

30. Siu CW, Moore JC, Li RA. Human embryonic stem cell-derived cardiomyocytes for heart therapies. CardiovascHematol Disord Drug Targets 2007; 7(2): 145-52.

31. Cai J, Yi FF, Yang XC, et al. Transplantation ofembryonic stem cell-derived cardiomyocytes improvescardiac function in infarcted rat hearts. Cytotherapy2007; 9(3): 283-91.

32. Min JY, Yang Y, Converso KL, et al. Transplantation ofembryonic stem cells improves cardiac function inpostinfarcted rats. J Appl Physiol 2002; 92: 288-96.

33. Kawamoto A, Gwon H, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001; 103:634-7.

34. Yeh ETH, Zhang S, Wu HD, Körbling M, Willerson JT,Estrov Z. Transdifferentiation of human peripheral bloodCD34+-enriched cell population into cardiomyocytes,endothelial cells, and smooth muscle cells in vivo.Circulation 2003; 108: 2070-3.

35. Kocher AA, Schuster MD, Szabolcs MJ, et al.Neovascularization of ischemic myocardium by humanbone-marrow–derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling andimproves cardiac function. Nat Med 2001; 7: 430-6.

36. Ma N, Ladilov Y, Kaminski A, et al. Umbilical cordblood cell transplantation for myocardial regeneration.Transplant Proc 2006; 38: 771-3.

37. Amado LC, Saliaris AP, Schuleri KH, et al. Cardiacrepair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction.Proc Natl Acad Sc USA 2005; 102: 11474-9.

38. Deten A, Volz HC, Clamors S, et al. Hematopoietic stemcells do not repair the infarcted mouse heart. CardiovascRes 2005; 65: 52-63.

39. Balsam LB, Wagers AJ, Christensen JL, Kofidis T,Weissman IL, Robbins RC. Haematopoietic stem cellsadopt mature haematopoietic fates in ischaemicmyocardium. Nature. 2004; 428(6983): 668-73.

40. Perin EC, Dohman HFR, Borojevic R, et al.Transendocardial, autologous bone marrow celltrans plantation for severe, chronic ischemic heart failure. Circulation 2003; 107: 2294-302.

41. Strauer BE, Brehm M, Zeus T, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation2002; 106: 1913-8.

42. Stamm C, Westphal B, Kleine HD, et al. Autologousbone-marrow stem-cell transplantation for myocardial regeneration. Lancet 2003; 361: 45-6.

43. Tse HF, Kwong YL, Chan JFK, Lo G, Ho CL, Lau CP.Angiogenesis in ischaemic myocardium byintramyocardial autologous bone marrow mononuclearcell transplantation. Lancet 2003; 361: 47-9.

44. Menasché P, Hagège AA, Vilquin JT, et al. Autologousskeletal myoblast transplantation for severepostinfarction left ventricular dysfunction. J Am CollCardiol 2003; 41: 1078-83.

45. Reinecke H, Poppa V, Murry CE. Skeletal muscle stemcells do not transdifferentiate into cardiomyocytes aftercardiac grafting. J Mol Cell Cardiol 2002; 34: 241-9.

46. Schächinger V, Assmus B, Britten MB, et al.Transplantation of progenitor cells and regenerationenhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am CollCardiol 2004; 44: 1690-9.

47. Assmuss B, Schächinger V, Teupe C, et al.Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction(TOPCARE-AMI). Circulation 2002; 106: 3009-17.

48. Ozbaran M, Omay SB, Nalbantgil S, et al. Autologousperipheral stem cell transplantation in patients withcongestive heart failure due to ischemic heart disease.Eur J Cardiothorasc Surg 2004; 25: 342-51.

49. Fernández-Avilés F, San Román JA, García-Frade J, etal. Experimental and clinical regenerative capability ofhuman bone marrow cells after myocardial infarction.Circ Res 2004; 95: 742-8.

50. Wollert KC, Meyer GP, Lotz J, et al. Intracoronaryautologous bone-marrow cell transfer after myocardialinfarction: the BOOST randomised controlled clinicaltrial. Lancet 2004; 364: 141-8.

51. Ince H, Petzsch M, Kleine HD, et al. Prevention of LeftVentricular Remodeling With Granulocyte Colony-Stimulating Factor After Acute Myocardial Infarction.Circulation 2005; 112: suppl I 73-80.

52. Zohlnhofer D, Ott I, Mehilli J, et al. Stem cell mobilizationby granulocyte colony-stimulating factor in patients withacute myocardial infarction: a randomized controlled trial.JAMA 2006; 295: 1003-10.

53. Sant’Anna R, Nardi NB, Sant’Anna JRM, et al.Transplante autólogo de células mononucleares demedula óssea para regeneração miocárdica durantecirurgia cardíaca. Arq Bras Cardiol 2004; 83: 39.

54. Tura BR, Martino HF, Gowdak LH, dos Santos RR, Dohmann HF, Krieger JE, Feitosa G, Vilas-Boas F,Oliveira SA, Silva SA, Bozza AZ, Borojevic R, de Carvalho AC. Multicenter randomized trial of cell therapyin cardiopathies - MiHeart Study. Trials. 2007; 8: 2.

55. Soares MBP, Lima RS, Rocha LL, et al. Transplantedbone marrow cells repair heart tissue and reducemyocarditis in chronic chagasic mice. Am J Patho 2004;164: 441-7.

56. Aguiar R. Cientista da Fiocruz ganha o Prêmio Zerbinide Cardiologia. Assessoria de Imprensa Fiocruz. 2003.http://www.fiocruz.br/ccs/novidades/dez03/premio_raq.htm.

57. Vilas-Boas F, Feitosa GS, Soares MBP, et al. Transplantede Células de Medula Óssea para o Miocárdio emPaciente com Insuficiência Cardíaca Secundária àDoença de Chagas. Arq Bras Cardiol 2004; 82: 181-4.

58. Kang H, Kim H, Zhang S, et al. Effects of intracoronaryinfusion of peripheral blood stem-cells mobilised withgranulocyte-colony stimulating factor on left ventricularsystolic function and restenosis after coronary stentingin myocardial infarction: the MAGIC cell randomisedclinical trial. Lancet 2004; 363: 751-6.

59. Silva GV, Litovsky S, Assad JA, et al. Mesenchymalstem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart functionin a canine chronic ischemia model. Circulation 2005;111: 150-6.

60. Denning-Kendall P, Singhs S, Bradley B, Hows J.Cytokine expansion culture of cord blood CD34+ cellsinduces marked and sustained changes in adhesion receptor and CXCR4 expressions. Stem Cells 2003;21, 61-70.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2007 Fernando P. Comparsi, Sandrine C. Wagner, Patricia Pranke

Downloads

Não há dados estatísticos.