Atividade antimicrobiana de óleos essenciais e compostos isolados frente aos agentes patogênicos de origem clínica e alimentar
PDF

Palavras-chave

óleos essenciais
extratos de plantas
agentes antimicrobianos
resistência microbiana a medicamentos

Como Citar

1.
Santos CH da S, Piccoli RH, Tebaldi VMR. Atividade antimicrobiana de óleos essenciais e compostos isolados frente aos agentes patogênicos de origem clínica e alimentar. Rev Inst Adolfo Lutz [Internet]. 1º de janeiro de 2017 [citado 28º de março de 2024];76:1-8. Disponível em: https://periodicos.saude.sp.gov.br/RIAL/article/view/33539

Resumo

Os óleos essenciais de plantas demonstram atividade antimicrobiana frente a diversos micro-organismos, e são considerados como alternativa ao uso de antibióticos convencionais. Este estudo testou a eficácia de óleos essenciais de canela (Cinnamomum cassia), orégano (Origanum vulgare), cravo-da-índia (Syzygium aromaticum), citronela (Cymbopogon nardus), além dos compostos isolados citral contra Staphylococcus aureus ATCC 25923 e citral e carvacrol contra Pseudomonas aeruginosa. Empregou-se o método de microdiluição em Caldo Tripticaseina de Soja (TSB) em placa de 96 cavidades para determinar a Concentração Inibitória Mínima (CIM) e posterior semeadura em Ágar Tripticaseina de Soja (TSA) para definir a Concentração Bactericida Mínima (CBM). Os inóculos foram padronizados (107 UFC/mL) de acordo com a escala de MacFarland. Os óleos essenciais de canela, orégano e citronela mostraram atividade antimicrobiana contra os dois microrganismos em diferentes concentrações. O óleo essencial de cravo-da-índia não apresentou efeitos inibitórios nas concentrações testadas. O carvacrol inibiu P. aeruginosa a partir da concentração 1,25 %. O citral inibiu S. aureus a partir da concentração 0,03 %, porém não apresentou atividade contra P. aeruginosa. O óleo essencial de citronela e o composto citral foram mais eficazes contra S. aureus. Para P. aeruginosa, o óleo essencial de canela apresentou atividade antimicrobiana nas menores concentrações.
https://doi.org/10.53393/rial.2017.v76.33539
PDF

Referências

1. Bachert C, Gevaert P, Van Cauwenberge P. Staphylococcus aureus enterotoxins: a key in airway disease? Allergy. 2002;57(6):480-7. [DOI: http://dx.doi.org/10.1034/j.1398-9995.2002.02156.x].

2. Borges MF, Nassu RT, Pereira JL, Andrade APC, Kuaye, AY. Perfil de contaminação por Staphylococcuse suas enterotoxinas e monitorização das condições de higiene em uma linha de produção de queijo de coalho. Cienc Rural. 2008;38(5):1431-8.

3. Appolinário RS. Absenteísmo na equipe de enfermagem: análise da produção científica. R Enferm. 2008;16(1):83-7.

4. Euzéby JP. LPSN. List of prokariotic names with standing in nomenclature. [acesso 2016 maio 29]. Disponível em: [http://www.bacterio.net/pseudomonas.html].

5. Tavares W. Manual de Antibióticos e Quimioterápicos Antinfecciosos. 3a ed. São Paulo: Atheneu; 2002.

6. Koneman WE, Allen SD, Janda WM, Schreckenberger PC, Winn Jr WC. Bacilos Gram-Negativos Não-Fermentadores. In: Koneman, E. W. Diagnóstico microbiológico - texto e atlas colorido. 5ª ed. Rio de Janeiro: Médica e Científica, 2001;263-329.

7. Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis. 2002;34(5):634-40. [DOI: https://dx.doi.org/10.1086/338782].

8. McGowan JE Jr. Resistance in nonfermenting gram-negative bacteria: multidrug resistance to the maximum. Am J Med. 2006;119(6 Suppl 1):S29-36. [DOI: https://dx.doi.org/10.1016/j.amjmed.2006.03.014].6/8Publicação contínua on line: número de páginas sem efeito para citaçãoOn line continuous publishing: page number not for citation purposes.

9. ECDC/EMEA. Joint Technical Report. The bacterial challenge: time to react. Stockholm: European Centre for Disease Prevention and Control; 2009. [DOI: http://dx.doi.org/10.2900/2518].

10. World Health Organization - WHO. Antimicrobial resistance, fact sheet 194. [acesso 2016 Mai 23] Disponível em: [http://www.who.int/mediacentre/factsheets/fs194/en/].

11. Abad MJ, Ansuategui M, Bermejo P. Active antifungal substances from natural sources. Arkivoc. 2007;7:116–45.

12. Chorianopoulos NG, Giaouris ED, Skandamis PN, Haroutounian SA, Nychas GJ. Disinfectant test against monoculture and mixed-culture biofilms composed of technological, spoilage and pathogenic bacteria: bactericidal effect of essential oil and hydrosol of Satureja thymbra and comparison with standard acid-base sanitizers. J Appl Microbiol.2008;104(6):1586–96. [DOI: http://dx.doi.org/10.1111/j.13652672.2007.03694.x].

13. Burt SA, Reinders RD. Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Lett Appl Microbiol. 2003;36(3):162–7. [DOI: http://dx.doi.org/10.1046/j.1472-765X.2003.01285.x].

14. De Martino L, De Feo V, Nazzaro F. Chemical composition and in vitro antimicrobial and mutagenic activities of seven Lamiaceae essential oils. Molecules. 2009;14(10):4213–30. [DOI: [http://dx.doi.org/10.3390/molecules14104213].

15. Antunes MDC, Cavaco AM. The use of essential oils for postharvest decay control. A review. Flavour Fragr J. 2010;25(5):351-366. [DOI: http://dx.doi.org/10.1002/ffj.1986].

16. Nedorostova L, Kloucek P, Kokoska L, Stolcova, M. Comparison of antimicrobial properties of essential oils in vapour and liquiq phase against foodbourne pathogens. Planta Med. 2008, 74:PI6. [DOI: http://dx.doi.org/10.1055/s-0028-1084914].

17. Guimarães LGL, Cardoso MG, Zacaroni LM, Lima RK, Pimental FA, Morais AR. Influence of light and temperature on the oxidation of the essential oil of lemongrass (Cymbopogon citratus (D.C.) STAPF). Quim Nova. 2008;31(6):1476-80.

18. Inouye S, Tsuruoka T, Uchida K, Yamaguchi H. Effect of sealing and Tween 80 on the antifungal susceptibility testing of essential oils. Microbiol Immunol. 2001;45(3):201-8. [DOI: http://dx.doi.org/10.1111/j.1348-0421.2001.tb02608.x].

19. National Committee for Clinical Laboratory Standards - NCCLS. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard —Sixth Edition. NCCLS document M7-A6, Wayne, Pa, USA; 2003.

20. Sharma M, Anand SK. Biofilms evaluation as an essential component of HACCP for food/dairy processing industry – a case. Food Control, 2002;13(6-7):469–77.[DOI: http://dx.doi.org/10.1016/S0956-7135(01)00068-8].

21. Ratledge C, Wilkinson SG. An overview of microbial lipid. In: Ratledge C, Wilkinson SG (eds): Microbial lipids, Vol. 1 (pp 3- 22). London: Academic Press; 1988.

22. Vaara M. Agents that increase the permeability of the outer membrane. Microbiol Rev. 1992;56(3):395–411.

23. Abdullah BH, Hatem SF, Jumaa W. A comparative study of the antibacterial activity of clove and rosemary essential oils on multidrug resistant bacteria. UK J Pharm Biosci. 2015;3(1):18-22. [DOI: http://dx.doi.org/10.20510/ukjpb/3/i1/89220].

24. Ates DA, Erdogrul OT. Antimicrobial activities of various medicinal and commercial plant extracts. Turk J Biol. 2003;27:157-62.

25. Santos JC, Carvalho Filho CD, Barros TF, Guimarães AG. In vitro antimicrobial activity of essential oils from oregano, garlic, clove and lemon against pathogenic bacteria isolated from Anomalocardia brasiliana. Semin: Ciênc Agrár. 2011;32(4):1557-64.[DOI: http://dx.doi.org/10.5433/1679-0359.2011v32n4p1557].

26. Hammer KA, Carson CF, Riley TV. Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol. 1999;86(6):985-90. [DOI: http://dx.doi.org/10.1046/j.1365-2672.1999.00780.x].

27. Becerril R, Nerín C, Gómez-Lus R. Evaluation of bacterial resistance to essential oils and antibiotics after exposure to oregano and cinnamon essential oils. Foodborne Pathog Dis. 2012;9(8):699-705. [DOI: http://dx.doi.org/10.1089/fpd.2011.1097]

28. Chaudhry NMA, Tariq P. Anti-microbial activity of Cinnamomum cassia against diverse microbial flora with its nutritional and medicinal impacts. Pak J Bot. 2006;38(1):169-74.

29. Nakahara K, Alzoreky NS, Yoshihashi T, Nguyen HTT, Trakoontivakorn G. Chemical composition and antifungal activity of essential oil from Cymbopogon nardus (citronella grass). JARC. 2003;37(4)249-52. [DOI:http://dx.doi.org/10.6090/jarq.37.249].

30. Millezi AF, Baptista NN, Caixeta DS, Rossoni DF, Cardoso MG, Piccoli RH. Caracterização química e atividade antibacteriana de óleos essenciais de plantas condimentares e medicinais contra Staphylococcus aureus e Escherichia coli. Rev Bras Plantas Med. 2014;16(1):18-24. [DOI: http://dx.doi.org/10.1590/S1516-05722014000100003].

31. Cuenca-Estrella M. Combinations of antifungal agents in therapy - what value are they? J Antimicrob Chemother. 2004;54(5):854–69. [DOI: http://dx.doi.org/10.1093/jac/dkh434].

32. Seixas PTL, Castro HC, Santos GR, Cardoso DP. Controle fitopatológico do Fusarium subglutinans pelo óleo essencial do capim-citronela (Cymbopogon nardus L.) e do composto citronelal. Rev Bras Plantas Med. 2011;13(esp):523-6. [DOI: http://dx.doi.org/10.1590/S1516-05722011000500003].

33. Saddiq AA, Khayyat SA. Chemical and antimicrobial studies of monoterpene: Citral. Pestic Biochem Physiol. 2010;98(1):89-93. [DOI: http://dx.doi.org/10.1016/j.pestbp.2010.05.004].

34. Wei LS, Wee W. Chemical composition and antimicrobial activity of Cymbopogon nardus citronella essential oil against systemic bacteria of aquatic animals. Iran J Microbiol. 2013;5(2):147-52.

35. Lamaita HC, Cerqueira MMOP, Carmo LS, Santos DA, Penna CFAM, Souza MR. Staphylococcus sp. counting and detection of staphylococcal enterotoxins and toxic shock toxin syndrome from cooled raw milk. Arq Bras Med Vet Zootec. 2005;57(5):702-9. [DOI: http://dx.doi.org/10.1590/S0102-09352005000500017].

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2017 Caio Henrique da Silva Santos, Roberta Hilsdorf Piccoli, Victor Maximiliano Reis Tebaldi

Downloads

Não há dados estatísticos.