THE ROLE OF PHLEBOTOMINE SALIVA ON THE ENHANCEMENT AND CONTROL OF LEISHMANIA INFECTION
pdf

Palavras-chave

Leishmaniose
Leishmania
Phlebotomíneo
Saliva

Como Citar

1.
Laurenti MD. THE ROLE OF PHLEBOTOMINE SALIVA ON THE ENHANCEMENT AND CONTROL OF LEISHMANIA INFECTION. Rev Inst Adolfo Lutz [Internet]. 30º de dezembro de 2010 [citado 8º de maio de 2024];69:52-9. Disponível em: https://periodicos.saude.sp.gov.br/RIAL/article/view/38541

Resumo

A leishmaniose é uma enfermidade infecciosa causada por parasitos do gênero Leishmania que são transmitidos por insetos vetores. A infecção no hospedeiro vertebrado se estabelece no momento em que a fêmea do flebotomíneo infectada, ao realizar o repasto sanguíneo, regurgita na pele do mamífero as formas promastigotas metacíclicas do parasito juntamente com parte do conteúdo da glândula salivar do vetor. Tem sido descrito que componentes do conteúdo da saliva do vetor tem propriedades imunomodulatórias facilitando o estabelecimento da infecção no hospedeiro. Por outro lado, outros estudos mostram que a pré-sensibilização do hospedeiro vertebrado com saliva de flebotomíneo leva a proteção da infecção por Leishmania. Esta revisão teve como principal objetivo, revisar o papel da saliva na evolução da infecção por Leishmania, quer seja na exacerbação ou na proteção.

pdf

Referências

1. Corbett CEP, Duarte MIS. Histopathological patterns of the liver involvement in visceral leishmaniasis. Rev Inst Med Trop S Paulo. 1987; 29: 131-136.

2. Corbett CEP, Paes RA, Laurenti MD, Andrade Junior HF, Duarte MI. Histopathology of lymphoid organs in experimental leishmaniasis. Int J Exp Pathol. 1992; 73: 417-433.

3. Silveira FT, Lainson R, Corbett CEP. Clinical and immunopathological spectrum of American cutaneous leishmaniasis with special reference to the disease in Amazon Brazil: Review. Mem Inst Oswaldo Cruz. 2004; 99: 239-251.

4. Silveira FT, Lainson R, Corbett CEP. Further observations on clinical, histopathological and immunological features of borderline disseminated cutaneous leishmaniasis caused by Leishmania (Leishmania) amazonensis. Mem Inst Oswaldo Cruz. 2005; 100: 525-534.

5. WHO. Control of the Leishmaniasis. Geneva, 1990. 158. (Technical Report Series: 793).

6. Fundação Nacional de Saúde - FUNASA. Manual de Controle da Leishmaniose Tegumentar Americana. Brasília, 2000. 62.

7. Lainson R, Shaw JJ. Evolution, classification and geographic distribution. In: Peters W, Killick- Kendrick, RD editors. The leishmaniasis in biology and medicine. London: Academic Press, 1987. 1:1- 20.

8. Laurenti MD, Corbett CEP, Sotto MN, Sinhorini IL, Goto H. The role of complement in the acute inflammatory process in the skin and in host-parasite interation in hamsters inoculated with Leishmania (Leishmania) chagasi. Int J Exp Pathol. 1996; 77: 15- 24.

9. Ribeiro JM. Role of saliva in blood-feeding by arthropods. Ann Rev Entomol. 1987; 32: 463-478.

10. Ribeiro JM. Vector saliva and its role in parasite transmission. Review. Exp Parasitol. 1989; 69: 104–106.

11. Champagne D. The role of salivary vasodilators in bloodfeeding and parasite transmission. Parasitol. Today. 1994; 10: 430–433.

12. Ribeiro JM. Blood-feeding arthropods: live syringes or invertebrate pharmacologists? Infect Agents Dis. 1995; 4: 143-152.

13. Titus RG, Ribeiro JM. Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science. 1988; 239(4845): 1306-8.

14. Titus RG, Ribeiro JM. The role of vector saliva in transmission of arthropod-borne diseases. Parasitol. Today. 1990; 6: 157-160.

15. Theodos CM, Ribeiro JM, Titus RG. Analysis of enhancing effect of sand fly saliva on Leishmania infection in mice. Infect Immun. 1991; 59: 1592-8.

16. Morris RV, Shoemaker CB, David JR, Lanzaro GC, Titus RG. Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. J Immunol. 2001; 167: 5226-30.

17. Samuelson E, Lerner R, Tesh, Titus R. A mouse model of Leishmania braziliensis braziliensis infection produced by coinjection with sand fly saliva. J Exp Med. 1991; 173: 49–54.

18. Lima HC, Titus RG. Effects of sand fly vector saliva on development of cutaneous lesions and the immune response to Leishmania braziliensis in BALB/c mice. Infect Immun. 1996; 64: 5442–5445.

19. Donnelly KB, Lima HC Titus RG. Histologic characterization of experimental cutaneous Leishmaniasis in mice infected with Leishmania braziliensis in the presence or absence of sand fly vector salivary gland lysate. J Parasitol. 1998; 84: 97–103.

20. Norsworthy NB, Sun J, Elnaiem D, Lanzaro G, Soong L. Sand fly saliva enhances Leishmania amazonensis infection by modulating interleukin-10 production. Infect Immun. 2004; 72: 1240-7.

21. Thiakaki M, Rohousova I, Volfova V, Volf P, Chang KP, Soteriadou K. Sand fly specificity of saliva-mediated protective immunity in Leishmania amazonensis-BALB/c mouse model. Microbes Infect. 2005; 7: 760-766.

22. Paranhos-Silva M, Oliveira GG, Reis EA, de Menezes RM, Fernandes O, Sherlock I, et al. A follow-up of Beagle dogs intradermally infected with Leishmania chagasi in the presence or absence of sand fly saliva. Vet Parasitol. 2003; 114: 97-111

23. Gomes R, Teixeira C, Teixeira MJ, Oliveira F, Menezes MJ, Silva C, et al. Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model. Proc Natl Acad Sci USA. 2008; 105: 7845-50.

24. Bezerra HS, Teixeira MJ. Effect of Lutzomyia whitmani (Diptera: Psychodidae) salivary gland lysates on Leishmania (Viannia) braziliensis infection in BALB/c mice. Mem Inst Oswaldo Cruz. 2001; 96:349-51

25. Menezes MJ, Costa DJ, Clarêncio J, Miranda JC, Barral A, Barral-Netto M, et al. Immunomodulation of human monocytes following exposure to Lutzomyia intermedia saliva. BMC Immunol. 2008; 9: 12.

26. Belkaid Y, Kamhawi S, Modi G, Valenzuela J, Noben-Trauth N, Rowton E, et al. Development of a natural model of cutaneous Leishmaniasis: Powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med. 1998; 10: 1941-1953.

27. Ribeiro JM, Modi GB, Tesh RB. Salivary apyrase activity of some Old World phlebotomine sand flies. Insect Biochem. 1989; 19: 409–412.

28. Ribeiro JM, Katz O, Pannell LK, Waitumbi J, Warburg A. Salivary glands of the sand fly Phlebotomus papatasi contain pharmacologically active amounts of adenosine and 5’-AMP. J Exp Biol. 1999; 202: 1551–1559.

29. Charlab R, Ribeiro JM. Cytostatic effect of Lutzomyia longipalpis salivary gland homogenates on Leishmania parasites. Am J Trop Med Hyg. 1993; 48: 831-838.

30. Charlab R, Tesh RB, Rowton ED, Ribeiro JM. Leishmania amazonensis: sensitivity of different promastigote morphotypes to salivary gland homogenates of the sand fly Lutzomyia longipalpis. Exp Parasitol. 1995; 80: 167–175.

31. Theodos CM, Titus RG. Salivary gland material from the sand fly Lutzomyia longipalpis has an inhibitory effect on macrophage function in vitro. Parasite Immunol. 1993; 15: 481–487.

32. Hall LR, Titus RG. Sand fly vector saliva selectively modulates macrophage functions that inhibit killing of Leishmania major and nitric oxide production. J Immunol. 1995; 155: 3501–3506.

33. Rogers KA, Titus RG. Immunomodulatory effects of Maxadilan and Phlebotomus papatasi sand fly salivary gland lysates on human primary in vitro immune responses. Parasite Immunol. 2003; 25:127-34.

34. Anjili CO, Mbati PA, Mwangi RW, Githure JI, Olobo JO, Robert LL, et al. The chemotactic effect of Phlebotomus duboscqi (Diptera: Psychodidae) salivary gland lysates to murine monocytes. Acta Trop. 1995; 60: 97–100.

35. Locksley RM, Heinzel FP, Holaday BJ, Mutha SS, Reiner SL, Sadick MD. Induction of Th1 and Th2 CD4+ subsets during murine Leishmania major infection. Review. Res Immunol. 1991; 142: 28-32.

36. Mbow ML, Bleyenberg JA, Hall LR, Titus RG. Phlebotomus papatasi sand fly salivary gland lysate down-regulates a Th1, but up-regulates a Th2, response in mice infected with Leishmania major. J Immunol. 1998; 161: 5571-7

37. Monteiro MC, Lima HC, Souza AA, Titus RG, Romão PR, Cunha FQ. Effect of Lutzomyia longipalpis salivary gland extracts on leukocyte migration induced by Leishmania major. Am J Trop Med Hyg. 2007; 76: 88-94.

38. DeKrey GK, Lima HC, Titus RG. Analysis of the immune responses of mice to infection with Leishmania braziliensis. Infect Immun. 1998; 66: 827–829.

39. Rocha FJ, Schleicher U, Mattner J, Alber G, Bogdan C. Cytokines, signaling pathways, and effector molecules required for the control of Leishmania (Viannia) braziliensis in mice. Infect Immun. 2007; 75: 3823-32.

40. Ji J, Sun J, Qi H, Soong L. Analysis of T helper cell responses during infection with Leishmania amazonensis. Am J Trop Med Hyg. 2002; 66: 338–345.

41. Ji J, Sun J, Soong L. Impaired expression of inflammatory cytokines and chemokines at early stages of infection with Leishmania amazonensis. Infect Immun. 2003; 71: 4278–4288.

42. Kamhawi S. The biological and immunomodulatory properties of sand fly saliva and its role in the establishment of Leishmania infections. Microbes Infect. 2000; 2:1765-73.

43. Andrade BB, de Oliveira CI, Brodskyn CI, Barral A, Barral-Neto M. Role of sand fly in human and experimental leishmaniasis. Review. Scan J Immunol. 2007; 66: 122-127.

44. Brodie TM, Smith MC, Morris RV, Titus RG. Immunomodulatory Effects of the Lutzomyia longipalpis Salivary Gland Protein Maxadilan on Mouse Macrophages. Infect Immun. 2007; 75: 2359–2365.

45. Titus R, Mbow M. The vasodilator of Lutzomyia longipalpis sand fly salivary glands exacerbates infection with Leishmania major in mice. Faseb J. 1991; (2 Suppl S): A970.

46. Castro-Sousa F, Paranhos-Silva M, Sherlock I, Paixão MS, Pontes de Carvalho LC, dos Santos WL. Dissociation between vasodilation and Leishmania infection-enhancing effects of sand fly saliva and maxadilan. Mem Inst Oswaldo Cruz. 2001; 96: 997-999.

47. Zidek Z. Adenosine–cyclic AMP pathways and cytokine expression. Eur Cytokine Netw. 1999; 10: 319–328.

48. Katz O, Waitumbi JN, Zer R, Warburg A. Adenosine, AMP, and protein phosphatase activity in sandfly saliva. Am J Trop Med Hyg. 2000; 62:145-50.

49. Lainson R, Ward RD, Shaw JJ. Experimental transmission of Leishmania chagasi, causative agent of neotropical visceral leishmaniasis, by the sandfly Lutzomyia longipalpis. Nature. 1977; 266(5603): 628-30.

50. Lawyer PG, Githure JI, Anjili CO, Olobo JO, Koech DK, Reid GD. Experimental transmission of Leishmania major to vervet monkeys (Cercopithecus aethiops) by bites of Phlebotomus duboscqi (Diptera: Psychodidae). Trans R Soc Trop Med Hyg. 1990; 84: 229-32.

51. Kamhawi S, Belkaid Y, Modi G, Rowton E, Sacks D. Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science. 2000; 290: 1351- 1354.

52. Laurenti MD, Silveira VMS, Secundino NFC, Corbett CEP, Pimenta PFP. Saliva of laboratory-rared Lutzomyia longipalpis exacerbates Leishmania (Leishmania) amazonensis more potently than saliva of wild-caught Lutzomyia longipalpis. Parasitol Int. 2009.

53. Valenzuela JG, Belkaid Y, Garfield MK, Mendez S, Kamhawi S, Rowton ED, et al. Toward a defined anti-Leishmania vaccine targeting vector antigens: characterization of a protective salivary protein. J Exp Med. 2001; 194: 331-342.

54. Requena JM, Iborra S, Carrion J, Alonso C, Soto M. Recent advances in vaccines for leishmaniasis. Expert Opin Biol Ther. 2004; 4: 1505-1517.

55. Brodskyn C, de Oliveira CI, Barral A, Barral-Netto M. Vaccines in leishmaniasis: advances in the last five years. Expert Rev Vaccines. 2007; 2: 705-717.

56. Theodor, O. A study of the reaction to Phlebotomus bites with some remarks on harara. Trans R Soc Trop Med Hyg. 1935; 29: 273- 284.

57. Vinhas V, Andrade BB, Paes F, Bomura A, Clarêncio J, Miranda JC et al. Human anti-saliva immune response following experimental exposure to the visceral leishmaniasis vector, Lutzomyia longipalpis. Eur J Immunol. 2007; 37: 3111-3121.

58. Barral A, Honda E, Caldas A, Costa J, Vinhas V, Rowton ED et al. Human immune response to sand fly salivary gland antigens: a useful epidemiological marker? Am J Trop Med Hyg. 2000; 62: 740-745.

59. Gomes RB, Brodskyn C, de Oliveira CI, Costa J, Miranda JC et al. Seroconversion against Lutzomyia longipalpis saliva concurrent with the development of anti-Leishmania chagasi delayed-type hypersensitivity. J Infec Dis. 2002; 186:1530-1534.

60. de Moura TR, Oliveira F, Novais FO, Miranda JC, Clarêncio J, Follador I et al. Enhanced Leishmania braziliensis infection following pre-exposure to sandfly saliva. PLOS Neg Trop Dis. 2007; 1(2 e84): 1-10.

61. Oliveira F, Lawyer PG, Kamhawi S, Valenzuela JG. Immunity to distinct sand fly salivary proteins primes the anti-Leishmania immune response towards protection or exacerbation of disease. PLOS Neg Trop Dis. 2008; 2(4 e226): 1-9.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2010 Márcia Dalastra Laurenti

Downloads

Não há dados estatísticos.