Do multiple freezing and thawing cycles of serum samples affect antibodies used for leptospirosis diagnosis?
PDF (English)

Palavras-chave

Leptospirosis
Zoonoses
Freezing
Serology

Como Citar

1.
Blanco RM, Lima E dos S, Oliveira CC de, Caló Romero E. Do multiple freezing and thawing cycles of serum samples affect antibodies used for leptospirosis diagnosis?. Rev Inst Adolfo Lutz [Internet]. 7º de outubro de 2025 [citado 20º de outubro de 2025];84:1-9,e41490. Disponível em: https://periodicos.saude.sp.gov.br/RIAL/article/view/41490

Resumo

There are no data on the effect of multiple freezing and thawing (FT) cycles on antibodies in serum samples from patients with leptospirosis. This study aimed to evaluate the impact of repeated FT cycles on antibody stability in banked serum samples used for leptospirosis diagnosis by the Microscopic Agglutination Test (MAT) and the IgM ELISA. A total of 67 serum samples from patients with leptospirosis confirmed by MAT were analyzed. Group 1 included 10 samples subjected to 14 FT cycles, while Group 2 comprised 57 samples stored for up to 23 years at −20 °C and thawed only once. No significant differences in antibody levels were observed between groups. Samples with MAT titers of 1:200 became undetectable after repeated cycles, but this did not compromise case interpretation. Regression analysis of IgM ELISA showed a declining trend across FT cycles. Positivity by both MAT and IgM ELISA was maintained for up to 40 FT cycles, except for one sample. These results suggest that antibodies remain stable, supporting the reuse of stored samples in research and laboratory validation studies for leptospirosis.

https://doi.org/10.53393/rial.2025.v.84.41490
PDF (English)

Referências

1. Caimi K, Ruybal P. Leptospira spp., a genus in the stage of diversity and genomic data expansion. Infect Genet Evol. 2020;81:104241. https://doi.org/10.1016/j.meegid.2020.104241

2. Casanovas-Massana A, Hamond C, Santos LA, Oliveira D, Hacker KP, Balassiano I et al. Leptospira yasudae sp. nov. and Leptospira stimsonii sp. nov., two new species of the pathogenic group isolated from environmental sources. Int J Syst Evol Microbiol. 2019;69(8):2150-8. https://doi.org/10.1099/ijsem.0.003480

3. Guglielmini J, Bourhy P, Schiettekatte O, Zinini F, Brisse S, Picardeau M. Genus-wide Leptospira core genome multilocus sequence typing for strain taxonomy and global surveillance. PLoS Negl Trop Dis. 2019;13(4):e0007374. https://doi.org/10.1371/journal.pntd.0007374 Erratum in: PLoS Negl Trop Dis. 2020;14(8):e0008673. https://doi.org/10.1371/journal.pntd.0008673

4. Vincent AT, Schiettekatte O, Goarant C, Neela VK, Bernet E, Thibeaux R et al. Revisiting the taxonomy and evolution of pathogenicity of the genus Leptospira through the prism of genomics. PLoS Negl Trop Dis. 2019;13(4):e0007270. https://doi.org/10.1371/journal.pntd.0007270

5. Costa F, Hagan JE, Calcagno J, Kane M, Torgerson P, Martinez Silveira MS et al. Global morbidity and mortality of leptospirosis: a systematic review. PLoS Negl Trop Dis. 2015;9(9):e0003898. https://doi.org/10.1371/journal.pntd.0003898

6. Rajapakse S. Leptospirosis: clinical aspects. Clin Med. 2022;22(1):14-7. https://doi.org/10.7861/ clinmed.2021-0784

7. Wickramasinghe M, Chandraratne A, Doluweera D et al. Predictors of severe leptospirosis: a review. Eur J Med Res. 2025;30(1):445. https://doi.org/10.1186/s40001-025-02518-2

8. Haake DA, Levett PN. Leptospirosis in humans. Curr Top Microbiol Immunol. 2015;387:65-97. https://doi.org/10.1007/978-3-662-45059-8_5

9. Levett PN. Leptospirosis. Clin Microbiol Rev. 2001;14(2):296-326. https://doi.org/10.1128/CMR.14.2.296-326.2001

10. Faine S, Adler B, Bolin C, Perolat P. Leptospira and Leptospirosis. 2nd ed. Melbourne: MediSci; 1999.

11. Romero EC, Bernardo CCM, Yasuda PH. Human leptospirosis: a twenty-nine-year serological study in São Paulo, Brazil. Rev Inst Med Trop São Paulo. 2003;45(5):245-8. https://doi.org/10.1590/s0036-46652003000500002

12. Romero EC, Yasuda PH. Molecular characterization of Leptospira sp. strains isolated from human subjects in São Paulo, Brazil using a polymerase chain reaction-based assay: a public health tool. Mem Inst Oswaldo Cruz. 2006;101(4):373-8. https://doi.org/10.1590/s0074-02762006000400005

13. Keyt BA, Baliga R, Sinclair AM, Carroll SF, Peterson MS. Structure, function, and therapeutic use of IgM antibodies. Antibodies. 2020;9(4):53. https://doi.org/10.3390/antib9040053

14. Ma H, Ó’Fágáin C, O’Kennedy R. Antibody stability: a key to performance – analysis, influences and improvement. Biochimie. 2020;177:213-25. https://doi.org/10.1016/j.biochi.2020.08.019

15. Fipps DR, Damato JJ, Brandt B, Burke DS. Effects of multiple freeze thaws and various temperatures on the reactivity of human immunodeficiency virus antibody using three detection assays. J Virol Methods. 1988;20(2):127-32. https://doi.org/10.1016/0166-0934(88)90146-2

16. Castro AR, Jost HA. Effect of multiple freeze and thaw cycles on the sensitivity of IgG and IgM immunoglobulins in the sera of patients with syphilis. Sex Transm Dis. 2013;40(11):870-1. https://doi.org/10.1097/OLQ.0000000000000036

17. Castejon MJ, Yamashiro R, Oliveira CC, Oliveira EL, Silveira EPR, Oliveira CAF. Effect of multiple freeze-thaw cycles on the stability of positive anti-treponemal serum samples. J Bras Patol Med Lab. 2017;53(4):246-51. https://doi.org/10.5935/1676-2444.20170038

18. Shurrab FM, Al-Sadeq DW, Amanullah F, Younes SN, Al-Jighefee H, Younes N et al. Effect of multiple freeze-thaw cycles on the detection of anti-SARS-CoV-2 IgG antibodies. J Med Microbiol. 2021;70(8):001402. https://doi.org/10.1099/jmm.0.001402

19. Pinsky NA, Huddleston JM, Jacobson RM, Wollan PC, Poland GA. Effect of multiple freeze-thaw cycles on detection of measles, mumps, and rubella virus antibodies. Clin Vaccine Immunol. 2003;10(1):19-21. https://doi.org/10.1128/CDLI.10.1.19-21.2003

20. Torelli A, Gianchecchi E, Monti M, Piu P, Barneschi I, Bonifazi C et al. Effect of repeated freeze-thaw cycles on influenza virus antibodies. Vaccines. 2021;9(3):267. https://doi.org/10.3390/vaccines9030267

21. Rastawicki W, Smietańska K, Rokosz N, Jagielski M. Effect of multiple freeze-thaw cycles on detection of IgA, IgG and IgM antibodies to selected bacterial antigens. Med Dosw Mikrobiol. 2012;64(1):79-85. PMID: 22808733

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Roberta Morozett Blanco, Elaine dos Santos Lima, Camila Cardoso de Oliveira, Eliete Caló Romero

Downloads

Não há dados estatísticos.