Abstract
Introduction: Several authors have pointed out limitations of measures adopted to control Aedes aegypti and dengue. Also, there is a lack of evidence about the relationship between Ae. aegypti infestation level indicators and dengue occurrence. Our objective was to evaluate the relationship between dengue occurrence and control and infestation measures for Ae. aegypti in a Brazilian southeastern city from 2001 to 2006. Methods: Dengue incidence rate (dependent variable) and the coverage of control activities and infestation index (covariates) were calculated using spatial units and years. We fitted spatiotemporal Zero-Inflated Poisson models, considering the following periods: September 2001 to August 2006 and September 2003 to August 2006. Results: Routine mosquito breeding control activity (with regular visits to all premises) was considered a protective factor for dengue occurrence. However, to effectively control occurrence, this activity needed to reach coverage corresponding to one visit every fortnight. The Breteau Index presented a direct but weak relationship with dengue occurrence. Conclusions: Routine activity is one of the most important control measures applied against dengue in Brazil. Despite this measure being developed without interruption and being the most expensive measure applied for dengue control, it proved inefficient because of the very high coverage necessary for effective control. Thus, a re-evaluation of the dengue control program in Brazil is urgently required to improve efficiencies. The Breteau Index results were attributed to a lack of fitting the model regarding the varying levels of immunity for the circulating serotypes in the study area, both in space and in time.
References
2. Faria NR, Azevedo R do S da S, Kraemer MUG, Souza R, Cunha MS, Hill SC et al. Zika virus in the Americas: Early epidemiological and genetic indings. Science. 15 de abril de 2016;352(6283):345-9.
3. Brasil P, Pereira JP, Moreira ME, Ribeiro Nogueira RM, Damasceno L, Wakimoto M et al. Zika Virus Infection in Pregnant Women in Rio de Janeiro. N Engl J Med. 15 de dezembro de 2016;375(24):2321-34.
4. Organização Panamericana de Saúde. Diretrizes relativas à prevenção e ao controle da dengue e da dengue hemorrágica nas Américas: Relatório de Reunião sobre Diretrizes para a Dengue. 1991.
5. Farinelli EC, Baquero OS, Stephan C, Chiaravalloti-Neto F. Low socioeconomic condition and the risk of dengue fever: A direct relationship. Acta Trop. abril de 2018;180:47-57.
6. Chiaravalloti Neto F. Descrição da colonização de Aedes aegypti na região de São José do Rio Preto, São Paulo. Rev Soc Bras Med Trop. agosto de 1997;30(4):279-85.
7. Mondini A, Bronzoni RV de M, Nunes SHP, Chiaravalloti Neto F, Massad E, Alonso WJ et al. Spatio-Temporal Tracking and Phylodynamics of an Urban Dengue 3 Outbreak in São Paulo, Brazil. PLoS Negl Trop Dis [Internet]. 26 de maio de 2009 [citado 3 de fevereiro de 2020];3(5). Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682200/
8. Rocco IM, Silveira VR, Maeda AY, Silva SJ dos S, Spenassatto C, BISORDI I et al. Primeiro isolamento de Dengue 4 no Estado de São Paulo, Brasil, 2011. Rev Inst Med Trop São Paulo. fevereiro de 2012;54(1):49-51.
9. Chiaravalloti-Neto F. Estudo da ocorrência de dengue em cidade de porte médio do estado de São Paulo. Tese de Livre docência. Faculdade de Saúde Pública da Universidade de São Paulo. 2010.
10. Heintze C, Velasco Garrido M, Kroeger A. What do community-based dengue control programmes achieve? A systematic review of published
evaluations. Trans R Soc Trop Med Hyg. abril de 2007;101(4):317-25.
11. Senior K. Dengue fever: what hope for control? Lancet Infect Dis. outubro de 2007;7(10):636.
12. Barreto FR, Teixeira MG, Costa M da CN, Carvalho MS, Barreto ML. Spreadpattern of the first dengue epidemic in the city of Salvador, Brazil. BMC Public Health. 7 de fevereiro de 2008;8(1):51.
13. Morrison AC, Zielinski-Gutierrez E, Scott TW, Rosenberg R. Defining challenges and proposing solutions for control of the virus vector Aedes aegypti. PLoS Med. 18 de março de 2008;5(3):e68.
14. Regis L, Monteiro AM, Melo-Santos MAV de, Silveira Jr JC, Furtado AF, Acioli RV et al. Developing new approaches for detecting and preventing Aedes aegypti population outbreaks: basis for surveillance, alert and control system. Mem Inst Oswaldo Cruz. fevereiro de 2008;103(1):50-9.
15. Esu E, Lenhart A, Smith L, Horstick O. Effectiveness of peridomestic space spraying with insecticide on dengue transmission; systematic review. Trop Med Int Health TM IH. maio de 2010;15(5):619-31.
16. Horstick O, Runge-Ranzinger S, Nathan MB, Kroeger A. Dengue vector-control services: how do they work? A systematic literature review and country case studies. Trans R Soc Trop Med Hyg. junho de 2010;104(6):379-86.
17. Gubler DJ. Dengue, Urbanization and Globalization: The Unholy Trinity of the 21(st) Century. Trop Med Health. dezembro de 2011;39(4 Suppl):3-11.
18. Achee NL, Gould F, Perkins TA, Jr RCR, Morrison AC, Ritchie SA et al. A Critical Assessment of Vector Control for Dengue Prevention. PLoS Negl Trop Dis. 7 de maio de 2015;9(5):e0003655.
19. Fares RCG, Souza KPR, Anez G, Ez G, Rios M. Epidemiological Scenario of Dengue in Brazil. BioMed Res Int. 30 de agosto de 2015;2015:e321873.
20. Teixeira MG, Barreto ML. Diagnosis and management of dengue. BMJ. 18 de novembro de 2009;339:b4338.
21. Bowman LR, Runge-Ranzinger S, McCall PJ. Assessing the relationship between vector indices and dengue transmission: a systematic review of the evidence. PLoS Negl Trop Dis. maio de 2014;8(5):e2848.
22. Ministério da Saúde. Fundação Nacional de Saúde. Programa Nacional de Controle da Dengue. 2002.
23. Mondini A, Chiaravalloti Neto F, Gallo Y, Sanches M, Lopes JCC. Spatial analysis of dengue transmission in a medium-sized city in Brazil. Rev Saúde
Pública. junho de 2005;39(3):444-51.
24. Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc Ser B Stat Methodol. 2009;71(2):319-92.
25. Bangliardo M, Cameletti M. Spatial and Spatio-temporal Bayesian Models with R - INLA | Wiley [Internet]. Wiley.com. [citado 18 de outubro de 2019]. Disponível em: https://www.wiley.com/en-us/Spatial+and+Spatio+temporal+Bayesian+Models+with+R+INLA-p-9781118326558
26. R: a language and environment for statistical computing [Internet]. [citado 18 de outubro de 2019]. Disponível em: https://www.gbif.org/pt/tool/81287/r-a-languageand-environment-for-statistical-computing
27. Szklo M, Nieto FJ. Epidemiology: Beyond the Basics. Jones & Bartlett Publishers; 2014. 530 p.
28. Rigau-Pérez JG, Clark GG. Cómo responder a una epidemia de dengue: visión global y experiencia en Puerto Rico. Rev Panam Salud Pública. abril de 2005;17:282-93.
29. Kyle JL, Harris E. Global Spread and Persistence of Dengue. Annu Rev Microbiol. 2008;62(1):71-92.
30. McCall PJ, Lenhart A. Dengue control. Lancet Infect Dis. janeiro de 2008;8(1):7-9.
31. Harris AF, McKemey AR, Nimmo D, Curtis Z, Black I, Morgan SA et al. Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes. Nat Biotechnol. setembro de 2012;30(9):828-30.
32. Lacroix R, McKemey AR, Raduan N, Wee LK, Ming WH, Ney TG et al. Open Field Release of Genetically Engineered Sterile Male Aedes aegypti in Malaysia. PLOS ONE. 27 de agosto de 2012;7(8):e42771.
33. Frentiu FD, Zakir T, Walker T, Popovici J, Pyke AT, Hurk A van den et al. Limited Dengue Virus Replication in Field-Collected Aedes aegypti Mosquitoes Infected with Wolbachia. PLoS Negl Trop Dis. 20 de fevereiro de 2014;8(2):e2688.
34. Axford JK, Ross PA, Yeap HL, Callahan AG, Hoffmann AA. Fitness of wAlbB Wolbachia Infection in Aedes aegypti: Parameter Estimates in an Outcrossed Background and Potential for Population Invasion. Am J Trop Med Hyg. março de 2016;94(3):507-16.
35. Stoddard ST, Morrison AC, VazquezProkopec GM, Paz Soldan V, Kochel TJ, Kitron U et al. The role of human movement in the transmission of vector-borne pathogens. PLoS Negl Trop Dis. 21 de julho de 2009;3(7):e481.
36. Stoddard ST, Forshey BM, Morrison AC, Paz-Soldan VA, Vazquez-Prokopec GM, Astete H et al. House-to-house human movement drives dengue virus transmission. Proc Natl Acad Sci U S A. 15 de janeiro de 2013;110(3):994-9.
37. Ghouth ASB, Amarasinghe A, Letson GW. Dengue outbreak in Hadramout, Yemen, 2010: an epidemiological perspective. Am J Trop Med Hyg. junho de 2012;86(6):1072-6.
38. Chiaravalloti-Neto F, Pereira M, Fávaro EA, Dibo MR, Mondini A, Rodrigues-Junior AL et al. Assessment of the relationship between entomologic
indicators of Aedes aegypti and the epidemic occurrence of dengue virus 3 in a susceptible population, São José do Rio Preto, São Paulo, Brazil. Acta Trop. 1º de fevereiro de 2015;142:167-77.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2020 Francisco Chiaravalloti Neto, Gerson Laurindo Barbosa, Thiago Santos Mota, Bruno Galli, Liciana Vaz de Arruda Silveira