Abstract
Nucleic acid amplification techniques (NAATs) that search for segments of the proviral genome of human T-lymphotropic viruses (HTLVs) are important tools for molecular characterization, diagnosis, and proviral load quantification. In Brazil, HTLV-1 and HTLV-2 are endemic, and the differential diagnosis between them is very important since HTLV-1 is related to severe diseases such as HTLV-1-associated myelopathy and adult T-cell leukemia/lymphoma, while HTLV-2 appears to be non-pathogenic. This narrative review describes the NAATs used over the years in HTLV diagnosis; presents a table with data on author/year of publication, place of work, technique used, target genes, and the objective of the study. It reports the causes of possible failures in molecular diagnosis; presents new methodologies and research on techniques that best fit the Brazilian laboratory conditions and supplies. It clarifies the need to implement HTLV molecular diagnosis in the public health network, based on its best cost-benefit ratio for laboratories that have infrastructure and trained personnel. In conclusion, it provides useful information for the implementation of public health policies within the scope of the unified system of health (Sistema Único de Saúde, SUS), since HTLV-1 infection has been gaining notoriety with the Ministry of Health of Brazil and the World Health Organization, as it is highly prevalent in various parts of the world, it is associated with diseases of high morbidity and mortality, has no cure, and can only be controlled with infection prevention measures that depend on the diagnosis.
References
Caterino-de-Araujo A, Barbosa-Stancioli EF, Alonso Neto JB,
Aragón MG, Galvão-Castro B, Ishak R, et al. Laboratory
diagnosis of HTLV in Brazil: assays, flowcharts, challenges
and perspectives. Rev Soc Bras Med Trop. 2021; 54:
e0175-2021. https://doi.org/10.1590/0037-8682-0175-2021
Jacob F, Santos-Fortuna E, Azevedo RS, Caterino-de-Araujo A.
Serological patterns for HTLV-I/II and its temporal trend
in high-risk populations attended at Public Health Units
of São Paulo, Brazil. J Clin Virol. 2008:42(2):
-55, 2008. https://doi.org/10.1016/j.jcv.2008.01.017
Caterino-de-Araujo A, Campos KR, Petrucci TVB, da Silva RX,
Lemos MF, Moreira RC. Surveillance of human retroviruses
in blood samples from patients with hepatitis B and C in São
Paulo, Brazil. Rev Soc Bras Med Trop. 2020; 53:e20190378.
https://doi.org/10.1590/0037-8682-0378-2019
Campos KR, Gonçalves MG, Costa NA, Caterino-de-Araujo A.
Comparative performances of serologic and molecular
assays for detecting HTLV-1 and HTLV-2 in patients
infected with HIV-1. Brazilian J Infect Dis. 2017;21(3):
-305. https://doi.org/10.1016/j.bjid.2017.02.005
Campos KR, Santos FLN, Brito VS, Gonçalves NLS, Araujo THA,
Galvão-Castro B, et al. Line immunoassay for confirmation and
discrimination of human T-cell lymphotropic virus infections in
inconclusive Western blot serum samples from Brazil. J Clin Microbiol.
;58(1):e01384-19. https://doi.org/10.1128/JCM.01384-19
Okuma K, Kuramitsu M, Niwa T, Taniguchi T, Masaki Y, Ueda G,
et al. Establishment of a novel diagnostic test algorithm for human
T-cell leukemia virus type 1 infection with line immunoassay
replacement of western blotting: a collaborative study for
performance evaluation of diagnostic assays in Japan. Retrovirology.
;17(1):26. https://doi.org/10.1186/s12977-020-00534-0
ICTV, Comitê Internacional de Taxonomia Viral (CITV)
Taxonomy - International Committee on Taxonomy of
Viruses (ICTV). Acessado em 30 de maio de 2020.
Disponível em: https://talk.ictvonline.org/taxonomy.
Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD,
Gallo RC. Detection and isolation of type C retrovirus
particles from fresh and cultured lymphocytes of a patient
with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA.
;77(12):7415-9. https://doi.org/10.1073/pnas.77.12.7415
Kalyanaraman VS, Sarngadharan MG, Robert-Guroff M, Miyoshi I,
Golde D, Gallo RC. A new subtype of human T-cell leukemia virus
(HTLV-II) associated with a T-cell variant of hairy cell leukemia.
Science. 1982;218:571-3. doi: 10.1126/science.6981847.
Bangham CR, Cook LB, Melamed A. HTLV-1 clonality in adult T-cell
leukaemia and non-malignant HTLV-1 infection. Semin Cancer Biol.
;26:89-98. https://doi.org/10.1016/j.semcancer.2013.11.003
Melamed A, Witkover AD, Laydon DJ, Brown R, Ladell K, Miners
K, et al. Clonality of HTLV-2 in natural infection. PLoS Pathog.
;10(3):e1004006. https://doi.org/10.1371/journal.ppat.1004006
Gessain A, Cassar O. Epidemiological aspects and
world distribution of HTLV-1 infection. Front Microbiol.
;3:388. doi:10.3389/fmicb.2012.00388.
Paiva A, Casseb J. Sexual transmission of human T-cell
Lymphotropic virus type 1. Rev Soc Bras Med Trop. 2014;47(3):
-74. http://dx.doi.org/10.1590/0037-8682-0232-2013
Calattini S, Chevalier SA, Duprez R, Bassot S, Froment
A, Mahieux R, et al. Discovery of a new human T-cell
lymphotropic virus (HTLV-3) in Central Africa. Retrovirology
;2:30. https://doi.org/10.1186/1742-4690-2-30
Wolfe ND, Heneine W, Carr JK, Garcia AD, Shanmugam V, Tamoufe
U, et al. Emergence of unique primate T-lymphotropic viruses
among central African bushmeat hunters. Proc Natl Acad Sci USA.
, 102(22):7994-9. https://doi.org/10.1073/pnas.0501734102
Ministério da Saúde (MS). Secretaria de Vigilância
em Saúde. Prevalência da infecção por HTLV-1/2
no Brasil. Boletim Epidemiológico. Volume 51 | Nº
| Nov. 2020. p.25-33. ISSN: 2358-9450
Ministério da Saúde (MS). Portaria 1.376, de novembro de 1993.
Diário Oficial da União, Brasília, 2 de dezembro de 1993. [Aprov a
alterações na Portaria n. 721/GM, de 9 de ago. 1989, que aprova
normas técnicas para coleta, processamento e transfusão de
sangue, componentes e derivados, e dá outras providências].
Ministério da Saúde (MS). Portaria 2.600, de 21 de outubro de
Diário Oficial da União, Brasília. [Aprova o Regulamento
Técnico do Sistema Nacional de Transplantes].
Proietti AB de FC. HTLV Cadernos Hemominas, Vol. 16. Minas
Gerais: Belo Horizonte: Fundação Centro de Hematologia
e Hemoterapia de Minas Gerais; 2015. Disponível em:
http://www.hemominas.mg.gov.br/publicacoes
Futsch N, Mahieux R, Dutartre H. HTLV-1, the other pathogenic
yet neglected human retrovirus: from transmission to therapeutic
treatment. Viruses 2018;10(1):1. doi:10.3390/v10010001.
Mesnard J-M, Barbeau B, Césaire R, Péloponèse J-M. Roles of
HTLV-1 basic zip factor (HBZ) in viral chronicity and
leukemic transformation. Potential new therapeutic
approaches to prevent and treat HTLV-1-related diseases.
Viruses 2015;7:6490–505. doi:10.3390/v7122952
Seiki M, hattori S, Hirayama Y, Yoshida M. Human adult T-cell
leukemia virus: complete nucleotide sequence of the provirus
genome integrated in leukemia cell DNA. Proc Natl Acad Sci
USA. 1983:80:3618-22. doi: 10.1073/pnas.80.12.3618
Shimotohno K, Wachsman W, Takahashi Y, Golde DW,
Miwa M, Sugimura T, et al. Nucleotide sequence of the 3’
region of an infectious human T-cell leukemia virus type II
genome. Proc Natl Acad Sc. USA. 1984;81:6657-61, 1984.
https://www.pnas.org/content/pnas/81/21/6657.full.pdf
Haseltine WA, Sodroski J, Patarca R, Briggs D, Perkins D,
Wong-Staal F. Structure of 3’ terminal region of type II human
T lymphotropic virus: evidence for new coding region. Science
;225:419-21, 1984. doi: 10.1126/science.6330894
Shimotohno K, Takahashi Y, Shimizu N, Gojobori T, Golde DW,
Chen ISY, et al. Complete nucleotide sequence of an infectious
clone of human T-cell leukemia virus type II: an open reading
frame for the protease gene. Proc Natl Acad Sci USA. 1985;82:
-5. https://www.pnas.org/content/pnas/82/10/3101.full.pdf
Malik KT, Even J, Karpas A. Molecular cloning and complete
nucleotide sequence of an adult T-cell leukemia virus/human T-cell
leukemia virus type I (ATLV/HTLV-I) isolate of Caribbean origin:
relationship to other members of the ATLV/HTLV-I subgroup. J Gen
Virol. 1988;69:1695-710. https://doi.org/10.1099/0022-1317-69-7-1695
Erlich HA. Polymerase chain reaction. J Clin Immunol. 1989;9:
-47. https://link.springer.com/article/10.1007/BF00918012
Komurian-Pradel F, Pelloquin F, Sonoda S, Osame M, de Thé
G. Geographical subtypes demonstred by RFLP following
PCR in the LTR region of HTLV-I. AIDS Res Hum Retroviruses
;8(4):429-34. https://doi.org/10.1089/aid.1992.8.429
Vidal AU, Gessain A, Yoshida M, Mahieux R, Nishioka K,
Tekaia F, et al. Molecular epidemiology of HTLV type I in Japan:
evidence for two distinct ancestral lineages with a particular
geographical distribuition. AIDS Res Hum Retroviruses
;10(11):1557-66. https://doi.org/10.1089/aid.1994.10.1557
Vidal AU, Gessain A, Yoshida M, Tekaia F, Garin B, Guillemain B, et al.
Phylogenetic classification of human T cell leukaemia/lymphoma vírustype I genotypes in five major molecular and geographicalsubtypes. J Gen Virol. 1994;75(12): 3655-66.https://doi.org/10.1099/0022-1317-75-12-3655
Heneine W, Khabbaz RF, Lal RB, Kaplan JE. Sensitive and
specific polymerase chain reaction assays for diagnosis of
human T-cell lymphotropic virus type I (HTLV-I) and HTLV-II
infections in HTLV-I/II seropositive individuals. J Clin Microbiol.
;30:1605-7. doi: 10.1128/jcm.30.6.1605-1607.1992
De-Araujo AC, Casseb JSR, Neitzert E, Xavier de Souza ML,
Mammano F, Del Mistro A, et al. HTLV-1 and HTLV-2 infections among
HIV-1 seropositive patients in São Paulo, Brazil. Eur J Epidemiol.
;10:165-71. https://link.springer.com/article/10.1007/BF01730366
Garin B, Gosselin S, de The G, Gessain A. HTLV-I/II infection
in a high viral endemic area of Zaire, Central Africa:
comparative evaluation of serology, PCR, and significance
of indeterminate Western Blot pattern. J Med Virol.
;44:104-9. https://doi.org/10.1002/jmv.1890440119
Vallejo A, Garcia-Saiz A. Typing human T-cell lymphotropic virus
(HTLV-I and HTLV-II) by nested polymerase chain reaction:
application to clinical specimens. J Virol Methods 1995;51:
-18. https://doi.org/10.1016/0166-0934(94)00093-V
Soldan SS, Graf MD, Waziri A, Flerlage AN, Robinson SM,
Kawanishi T, et al. HTLV-I/II seroindeterminate Western blot
reactivity in a cohort of patients with neurological disease.
J Infect Dis. 1999; 180:685-694. doi: 10.1086/314923
Poiesz BJ, Dube S, Choi D, Esteban E, Ferrer J, Leon-Ponte
M, et al. Comparative performances of an HTLV-I/II EIA and
other serologic and PCR assays on samples from persons
at risk for HTLV-II infection. Transfusion 2000;40:924-30.
https://doi.org/10.1046/j.1537-2995.2000.40080924.x
Costa JMP, Sumita LM, Segurado AC. Non-radioisotope detection
of pol sequences of HTLV-1 proviral DNA: Standardization
and sensitivity analysis. J Virol Methods 2006;137: 29-33.
https://doi.org/10.1016/j.jviromet.2006.05.026
Costa JMP, Segurado AC. Molecular evidence of human T-cell
lymphotropic virus types 1 and 2 (HTLV-1 and HTLV-2) infections
in HTLV seroindeterminate individuals from São Paulo, Brazil.
J Clin Virol. 2009;44:185-9. doi: 10.1016/j.jcv.2008.12.015
Matsumoto C, Mitsunaga S, Oguchi T, Motomi Y, Shimada T,
Ichigawa A, et al. Detection of human T-cell leukemia virus
type I (HTLV-I) provirus in an infected cell line and in peripheral
mononuclear cells of blood donors by the nested double
polymerase chain reaction method: comparison with HTLV-I
antibody tests. J Virol. 1990;64(11):5290-4. https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC248573/pdf/jvirol00066-0068.pdf
Caterino-de-Araujo A, Santos-Fortuna E, Zandoná-Meleiro
MC, Suleiman J, Calabrò ML, Favero A, et al. Sensitivity of
two ELISA tests in relation to western blot in detecting HTLV-1
and HTLV-2 infections among HIV-1-infected patients from São
Paulo, Brazil. Diagn Microbiol Infect Dis. 1998;30(3):173‑82.
https://doi.org/10.1016/S0732-8893(97)00236-8
Mangano AM, Remesar M, del Pozo A, Sen L. Human T
lymphotropic virus types I and II proviral sequences in Argentinian
blood donors with indeterminate Western blot patterns. J Med
Virol. 2004;74:323-7. https://doi.org/10.1002/jmv.20172
Morimoto HK, Morimoto AA, Reiche EMV, Ueda LT, Matsuo
T, Reiche FV, et al. Difficulties in the diagnosis of HTLV‑2
infection in HIV/AIDS patients from Brazil. Comparative
performances of serologic and molecular assays, and
detection of HTLV-2b subtype. Rev Inst Med Trop S. Paulo.
;49(4):225-30. doi: 10.1590/s0036-46652007000400006
Zanjani DS, Shahabi M, Talaei N, Afzalaghaee M, Tehranian F,
Bazargani R. Molecular analysis of human T cell lymphotropic
virus type 1 and 2 (HTLV-1/2) seroindeterminate blood donors from
Northeast Iran: Evidence of proviral tax, env, and gag sequences. AIDS
Res Hum Retroviruses 2011;27:131-5. doi: 10.1089/aid.2010.0017
Tuke PW, Luton P, Garson JA. Differential diagnosis of
HTLV-I and HTLV-II infections by restriction enzyme analysis
of “nested” PCR products. J Virol Methods 1992;40:163‑73.
https://doi.org/10.1016/0166-0934(92)90065-L
Gallego S, Mangano A, Gastaldello R, Sem L, Medeot S.
Usefulness of a nested-polymerase chain reaction for
molecular diagnosis of human T-cell lymphotropic virus
type I/II. Mem Inst Oswaldo Cruz, R Janeiro. 2004;99(4):377‑80.
https://doi.org/10.1590/S0074-02762004000400006
Vallinoto ACR, Muto NA, Pontes GS, Machado LFA, Azevedo VN,
Santos SEB, et al. Serological and molecular evidence
of HTLV-1 infection among Japanese immigrants living in
the Amazon region of Brazil. Jpn J Infect Dis. 2004;57:
-9. https://www.niid.go.jp/niid/images/JJID/57/156.pdf
Laurentino RV, Lopes IGL, Azevedo VN, Machado LF,
Moreira MR, Lobato L, et al. Molecular characterization
of human T-cell lymphotropic virus coinfecting human
immunodeficiency virus 1 infected patients in the Amazon
region of Brazil. Mem Inst Oswaldo Cruz. 2005;100:
-6. doi: 10.1590/s0074-02762005000400006
Vallinoto ACR, Pontes GS, Muto NA, Lopes IG, Machado LF,
Azevedo VN, et al. Identification of human T-cell lymphotropic
virus infection in a semi-isolated afro-brazilian quilombo
located in the Marajó island (Pará, Brazil). Mem Inst Oswaldo Cruz,
R Janeiro. 2006;101:103-5. doi: 10.1590/s0074-02762006000100020
Souza LA, Lopes IGL, Maia EL, Azevedo VN, Machado LFA, Ishak
MOG, et al. Caracterização molecular do HTLV-1 em pacientes
com paraparesia espástica tropical/mielopatia associada ao HTLV-1
em Belém, Pará. Rev Soc Bras Med Trop. 2006;39(5):
-6. https://www.scielo.br/pdf/rsbmt/v39n5/a17v39n5.pdf
Berini CA, Eirin ME, Pando MA, Biglione MM. Human T-cell
lymphotropic virus types I and II (HTLV-I and -II) infection among
seroindeterminate cases in Argentina. J Med Virol. 2007;79:
-73. https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmv.20731
Casseb J, Posada-Vergara MP, Montanheiro P, Fukumori LMI,
Olah I, Smid J, et al. T CD4+ cells count among patients co-infected
with human Immunodeficiency virus type 1 (HIV-1) and human
T-cell leukemia virus type 1 (HTLV-1): high prevalence of tropical
spastic paraparesis / HTLV-1-associated myelopathy (TSP/HAM).
Rev Inst Med trop S. Paulo. 2007; 49(4):
-3. https://doi.org/10.1590/S0036-46652007000400007
Ishak R, Vallinoto ACR, Azevedo VN, Vicente ACP, Hall WW,
Ishak MOG. Molecular evidence for infection by HTLV-2
among individuals with negative serological screening
tests for HTLV antibodies. Epidemiol Infect. 2007;135:
-9. https://doi.org/10.1017/S0950268806006984
Zehender G, Ebranati E, Bernini F, De Maddalena C, Giambelli
C, Collins J, et al. Phylogeny of human T cell lymphotropic
virus type 1 in Peru: a high degree of evolutionary relatedness
with South African isolates. AIDS Res Hum Retroviruses
;23(9):1146-9. https://doi.org/10.1089/aid.2007.0039
Montanheiro P, Olah I, Fukumori LMI, Smid J, Oliveira ACP, Kanzaki
LIB, et al. Low DNA HTLV-2 proviral load among women in São Paulo
City. Virus Res. 2008;135:22-5. doi:10.1016/j.virusres.2008.01.015
Olah I, Fukumori LMI, Smid J, Penalva de Oliveira AC, Duarte
AJS, Casseb J. Neither molecular diversity of envelope,
immunosuppression status, nor proviral load causes indeterminate
HTLV Western blot profiles in samples from human T-cell
lymphotropic virus type 2 (HTLV-2)-infected individuals. J Med
Virol. 2010;82:837-42. https://doi.org/10.1002/jmv.21718
Costa EAS, Magri MC, Caterino-de-Araujo A. The best
algorithm to confirm the diagnosis of HTLV-1 and HTLV-2 inat risk individuals from São Paulo, Brazil. J Virol Methods.2011; 173:280-3. doi: 10.1016/j.jviromet.2011.02.018
De Oliveira EH, Oliveira-Filho AB, Souza LA, Silva LV, Ishak
MOG, Ishak R, et al. Human T-cell lymphotropic virus in patients
infected with HIV-1: molecular epidemiology and risk factors
for transmission in Piauí, Northeastern Brazil. Curr HIV Res.
,10(8):700-7. doi: 10.2174/1570162x11209080700.
Berini CA, Eirin ME, Delfino CM, W eissenbacher M, Biglione
MM. Predominance of human lymphotropic T cell virus type 2
subtype b in urban populations of Argentina. AIDS Res Hum
Retrovir. 2012;28(9):1102-9. doi: 10.1089/AID.2011.0311
Costa CA, Furtado KCYO, Ferreira LSCF, Almeida DS,
Linhares AC, Ishak R, et al. Familial transmission of
human T-cell lymphotrophic virus: silent dissemination of
an emerging but neglected infection. PLoS Negl Trop Dis.
;7(6):e2272. doi:10.1371/journal.pntd.0002272
Paiva A, Smid J, Haziot ME, Assone T, Pinheiro S, Fonseca
LAM, et al. High risk of heterosexual transmission of human
T-cell lymphotropic virus type 1 infection in Brazil. J Med
Virol. 2017;89:1287-94. https://doi.org/10.1002/jmv.24745
Vrielink H, Zaaijer HL, Cuypers HTM, van der Poel CL,
Woerdeman M, Lelie PN, et al. Evaluation of a new HTLV-I/
II polymerase chain reaction. Vox Sang. 1997;72:144-7.
https://doi.org/10.1046/j.1423-0410.1997.7230144.x
Liu H, Shah M, Stramer SL, Chen W, Weiblen BJ, Murphy EL.
Sensitivity and specificity of human T-lymphotropic virus (HTLV) types
I and II polymerase chain reaction and several serologic assays in
screening a population with a high prevalence of HTLV-II. Transfusion
;39:1185-93. https://doi.org/10.1046/j.1537-2995.1999.39111185.x
Césaire R, Dehée A, Lézin A, Désiré N, Bourdonné O, Dantin
F, et al. Quantification of HTLV type I and HIV type 1 DNA
load in coinfected patients: HIV type 1 infection does not
alter HTLV type I proviral amount in the peripheral blood
compartment. AIDS Res Hum Retroviruses 2001;17(9):799‑805.
https://doi.org/10.1089/088922201750251990
Estes MC, Sevall JS. Multiplex PCR using real time DNA amplification
for the rapid detection and quantitation of HTLV I or II. Mol Cell
Probes. 2003;17:59-68. doi:10.1016/S0890-8508(03)00002-1
Kamihira S, Dateki N, Sugahara K, Hayashi T, Harasawa
H, Minami S, et al. Significance of HTLV-1 proviral load
quantification by real-time PCR as a surrogate marker for
HTLV-1-infected cell count. Clin Lab Haem. 2003;25:111‑7.
https://doi.org/10.1046/j.1365-2257.2003.00503.x
Lee TH, Chafets DM, Busch MP, Murphy EL. Quantitation of
HTLV-I and II proviral load using real-time quantitative PCR
with SYBR Green chemistry. J Clin Virol. 2004;31:275‑82.
https://doi.org/10.1016/j.jcv.2004.05.016
Murphy EL, Lee T-H, Chafets D, Nass CC, Wang B, Loughlin K,
et al. Higher human T lymphotropic virus (HTLV) provirus load is
associated with HTLV-I versus HTLV-II, with HTLV-II subtype A
versus B, and with male sex and a history of blood transfusion.
J Infect Dis. 2004;190:504-10. https://doi.org/10.1086/422398
Montanheiro PA, Oliveira AC, Posada-Vergara MP, Milagres AC,
Tauil C, Marchiori PE, et al. Human T-cell lymphotropic virus
type I (HTLV-I) proviral DNA viral load among asymptomatic
patients and patients with HTLV-II-associated myelopathy/tropical
spastic paraparesis. Braz J Med Biol Res. 2005;28:1643‑7.https://doi.org/10.1590/S0100-879X2005001100011
Olindo S, Lézin A, Cabre P, Merle H, Saint-Vil M, Kaptue ME, et al.
HTLV-1 proviral load in peripheral blood mononuclear cells quantifie d
in 100 HAM/TSP patients: A marker of disease progression. J Neurol
Sci. 2005;237:53-9. https://doi.org/10.1016/j.jns.2005.05.010
Yakova M, Lézin A, Dantin F, Lagathu G, Olindo S, Jean‑Baptiste
G, et al. Increased proviral load in HTLV-1-infected patientswith rheumatoid arthritis or connective tissue disease.Retrovirol. 2005,2:4. https://doi.org/10.1186/1742-4690-2-4
Best I, Adaui V, Verdonck K, González E, Tipismana M, Clark D,
et al. Proviral load and immune markers associated with human
T-lymphotropic virus type 1 (HTLV-1)-associated myelopathy/
tropical spastic paraparesis (HAM/TSP) in Peru. Clin Exp
Immunol. 2006;146(2):226-33. doi: 10.1111/j.1365‑2249.20
03208.x https://pubmed.ncbi.nlm.nih.gov/19213697/
Tamegão-Lopes BP, Rezende PR, Maradei-Pereira LMC, Lemos
JAR. HTLV-1 and HTLV-2 proviral load: a simple method using
quantitative real time PCR. Rev Soc Bras Med Tropical S Paulo.
;39(6):548-52. https://www.scielo.br/pdf/rsbmt/v39n6/07.pdf
Vitone F, Gibellini D, Schiavone P, D’Antuono A, Gianni L,
Bon I, et al. Human T-lymphotropic virus type 1 (HTLV-1)
prevalence and quantitative detection of DNA proviral load
in individuals with indeterminate/positive serological results.
BMC Infect Dis. 2006;6:41. doi:10.1186/1471-2334-6-41.
Arruda BC, Lira RA, Loureiro P, Brandão L, Souza P, Souza WV,
et al. Evaluation of real time PCR technique to diagnosis of human
T-lymphotropic virus type I (HTLV-I) in patients in the Hematologia
da Fundação Hemope Hospital, in Northeastern Brazil. Rev Bras
Hematol Hemoter. 2008;30(5):384-9. https://www.scielo.br/j/
rbhh/a/6HJQDg8PQHVMBDPKg8ffP3M/?format=pdf&lang=en
Besson G, Kazanji M. One-step, multiplex, real-time PCR assay
with molecular beacon probes for simultaneous detection,
differentiation and quantification of human T-cell leukaemia
viruses types 1, 2 and 3. J Clin Microbiol. 2009;47(4):1129-35. doi:
1128/JCM.02006-08 https://jcm.asm.org/content/47/4/1129
Primo PJ, Siqueira I, Nascimento MCF, Oliveira MF, Farre L,
Carvalho EM, et al. High HTLV-1 proviral load, a marker for
HTLV-1-associated myelopathy/tropical spastic paraparesis, is
also detected in patients with infective dermatitis associated with
HTLV-1. Braz J Med Biol Res. 2009;42(8):761-4. https://www.scielo.
br/j/bjmbr/a/6CsgkdrvPpBk93Y7PZ9rXSc/?lang=en&format=pdf
Neto WK, Da-Costa AC, de Oliveira ACS, Martinez VP, Nukui
Y, Sabino EC, et al. Correlation between LTR point mutations
and proviral load levels among Human T cell Lymphotropic
Virus type 1 (HTLV-1) asymptomatic carriers. Virol J.
;8:535. http://www.virologyj.com/content/8/1/535
Waters A, Oliveira ALA, Coughlan S, de Venecia C, Schor D,
Leite A-C, Araújo AQC, et al. Multiplex real-time PCR for the
detection and quantitation of HTLV-1 and HTLV-2 proviral load:
addressing the issue of indeterminate HTLV results. J Clin Virol.
;52(1):38-44. https://doi.org/10.1016/j.jcv.2011.05.022
Cabral F, Arrudac LB, Araújo ML, Montanheiro P, Smid J,
Oliveira ACP, et al. Detection of human T-cell lymphotropic
virus type 1 in plasma samples. Vir Res. 2012;163:
-90. https://doi.org/10.1016/j.virusres.2011.08.014
Olavarria VN, Gomes AN, Kruschewsky RA, Bernardo
Galvão-Castro B, Grassi MFR. Evolution of HTLV-1 proviral
load in patients from Salvador, Brazil. Braz J Infect Dis.
;16(4):357-60. https://doi.org/10.1016/j.bjid.2012.06.022
Ribeiro MA, MD, Martins ML, Teixeira C, Ladeira R, Oliveira
MF, Januário JH, et al. Blocking vertical transmission of
human T cell lymphotropic virus type 1 and 2 through
breastfeeding interruption. Pediatr Infect Dis J. 2012;
:1139-43. doi: 10.1097/INF.0b013e318263215e.
Souza VG, Martins ML, Carneiro-Proietti ABF, Januário JN,
Ladeira RVP, Silva CMS, et al. High prevalence of HTLV‑1
and 2 viruses in pregnant women in São Luis, State of
Maranhão, Brazil. Rev Soc Bras Med Trop. 2012; 45(2):159‑62.
https://doi.org/10.1590/S0037-86822012000200004
Castro GM, Balangero MC, Maturano E, Mangeaud A,
Gallego SV. Development and validation of a real-time
PCR assay for a novel HTLV-1 tax sequence detection and
proviral load quantitation. J Virol Methods 2013;189:383‑7.
http://dx.doi.org/10.1016/j.jviromet.2013.02.018
Abad-Fernández M, Cabrera C, García E, Vallejo A. Transient
increment of HTLV-2 proviral load in HIV-1-co-infected patients
during treatment intensification with raltegravir. J Clin Virol.
;59:204-7. http://dx.doi.org/10.1016/j.jcv.2013.12.010
Ishihara K, Inokuchi N, Tsushima Y, Tsuruda K, Morinaga
Y, Hasegawa H, et al. Relevance of molecular tests for
HTLV-1 infection as confirmatory tests after the first
sero‑screening. J Immunoassay Immunoch. 2014;35(1):74‑82.
https://doi.org/10.1080/15321819.2013.792832
Cánepa C, Salido J, Ruggieri M, Fraile S, Pataccini G, Berini C,
Biglione M. Low proviral load is associated with indeterminate
Western Blot patterns in human T-cell lymphotropic virus type
infected individuals: could punctual mutations be related?
Viruses. 2015;7(11):5643-58. https://doi.org/10.3390/v7112897
Nasir IA, Ahmad AE, Emeribe AU, Shehu MS, Medugu JT,
Babayo A. Molecular detection and clinical implications of HTLV‑1
infections among antiretroviral therapy-naïve HIV-1‑infected
individuals in Abuja, Nigeria. Virology: Research and Treatment
;6:17-23. https://doi.org/10.4137/VRT.S35331
Vet JAM, Majithia AR, Marras SAE, Tyagi S, Dube S,
Poiesz BJ, et al. Multiplex detection of four pathogenic
retroviruses using molecular beacons Proc Natl Acad Sci USA.
;96(11):6394-9. https://doi.org/10.1073/pnas.96.11.6394
Dehée A, Césaire R, Desiré N, Lézin A, Bourdonné O, Béra
O, et al. Quantification of HTLV-1 proviral load by TaqMan
real-time PCR assay. J Virol Methods 2002;102:37-51.
https://doi.org/10.1016/S0166-0934(01)00445-1
Moens B, López G, Adaui V, González E, Kerremans L, Clark D,
et al. Development and validation of a multiplex real-time PCR
assay for simultaneous genotyping and human T-lymphotropic
virus type 1, 2, and 3 proviral load determination. J Clin
Microbiol. 2009;47(11):3682-91. doi: 10.1128/JCM.00781-09
Andrade RG, Ribeiro MA, Namen-Lopes MSS, Silva SMN,
Basques FV, Ribas JG, et al. Evaluation of the use of
real‑time PCR for human T cell lymphotropic virus 1 and 2 as
a confirmatory test in screening for blood donors. Rev Soc
Bras Med Trop. 2010;43(2):111-5. https://www.scielo.br/j/
rsbmt/a/6rTQ9jMdYwhGMkYL7vTVpzK/?format=pdf&lang=e
Furtado MSBS, Andrade RG, Romanelli LCF, Ribeiro MA, Ribas
JG, Torres EB. Monitoring the HTLV-1 proviral load in the peripheral
blood of asymptomatic carriers and patients with HTLV-associated
myelopathy/tropical spastic paraparesis from a Brazilian cohort:
ROC curve analysis to establish the threshold for risk disease.
J Med Virol. 2012; 84:664-71. doi: 10.1002/jmv.23227
Rosadas C, Cabral-Castro MJ, Vicente ACP, Peralta JM,
Puccioni-Sohler M. Validation of a quantitative real-time
PCR assay for HTLV-1 proviral load in peripheral blood
mononuclear cells. J Virol Methods 2013;193:536-41.
https://doi.org/10.1016/j.jviromet.2013.07.040
Kamihira S, Yamano Y, Iwanaga M, Sasaki D, Satake M, Okayama
A, et al. Intra- and inter-laboratory variability in human T-cell
leukemia virus type-1 proviral load quantification using real-ti me
polymerase chain reaction assays: A multi-center study. Cancer Sci.
;101:2361-7. https://doi.org/10.1111/j.1349-7006.2010.01720.x
Kuramitsu M, Okuma K, Nakashima M, Sato T, Sazaki D,
Hasegawa H, et al. Development of reference material
with assigned value for human T-cell leucemia virus
type 1 quantitaive PCR in Japan. Microbiol Immunol.
;62:673-6. https://doi.org/10.1111/1348-0421.12644
Gonçalves MG. Padronização e validação da PCR em tempo real
para a detecção rápida e quantificação de carga proviral de HTL V-1
e HTLV-2. Tese (Doutorado em Ciências) - Secretaria de Estado da
Saúde de São Paulo, Programa de Pós-Graduação em Ciências da
Coordenadoria de Controle de Doenças, São Paulo, 2019; 158p.
https://pesquisa.bvsalud.org/ses/resource/pt/biblio-1051598
Bandeira LM, Puga MAM, de Paula VS, Demarchi LHF, Lichs
GGC, Domingos JA, et al. Use of synthetic oligonucleotides
for determination of HTLV-1 proviral load by real-time PCR:
a helpful alternative approach in the clinical management. J
Appl Microbiol. 2020;129:768-74. doi:10.1111/jam.14646
Brunetto GS, Massoud R, Leibovitch EC, Caruso B, Johnson
K, Ohayon J, et al. Digital droplet PCR (ddPCR) for the precise
quantification of human T-lymphotropic virus 1 proviral loads in
peripheral blood and cerebrospinal fluid of HAM/TSP patients and
identification of viral mutations. J Neurovirol. 2014;20(4):341- 51.
https://link.springer.com/article/10.1007/s13365-014-0249-3
Hedberg ST, Eriksson L, Demontis MA, Mölling P, Sundqvist M,
Taylor G, et al. Droplet digital PCR for absolute quantification
of proviral load of human T-cell lymphotropic virus
(HTLV) types 1 and 2. J Virol Methods. 2018; 60:70‑4.
https://doi.org/10.1016/j.jviromet.2018.07.003
Yurick D, Khoury G, Clememns B, Loh L, Pham H,
Kedzierska K, et al. Multiplex droplet digital PCR assay for
quantification of human T-cell leukemia virus type 1 subtype
c DNA proviral load and T cells from blood and respiratory
exudates sampled in a remote setting. J Clin Microbiol.
;57(2):e01063-18. https://doi.org/10.1128/JCM.01063-18
Gomes YCP. Determinação da acurácia do teste de amplificação
isotérmica de ácidos nucleicos mediada por alça (LAMP) para a
confirmação de infecção pelos vírus linfotrópicos para células t
humanas dos tipos 1 e 2 (HTLV-1/2). Dissertação (Mestrado emCiências) – Fundação Oswaldo Cruz, Programa de Pós-Graduação emPesquisa Clínica em Doenças Infecciosas, Rio de Janeiro, 2020; 72p.
Gomes Y, Caterino-de-Araujo A, Campos K, Gonçalves MG, Leite
AC, Lima MA, et al. Loop-Mediated Isothermal Amplification (LAMP)
Assay for Rapid and Accurate Confirmatory Diagnosis of HTLV-1/2
Infection. Viruses 2020;12:981 https://doi.org/10.3390/v12090981
De Giorgi V, Zhou H, Alter HJ, Allison RD. A microarray‑based
pathogen chip for simultaneous molecular detection of
transfusion–transmitted infectious agents. J Transl Med.
;17:156 https://doi.org/10.1186/s12967-019-1905-4
Norouzi M, Ghobadi MZ, Golmimi M, Mozhgani SH, Ghourchian H,
Rezaee SA. Quantum dot-based biosensor for the detection of human
T-lymphotropic virus-1. Analitycal Letters. 2017;50(15):2402‑11.
http://dx.doi.org/10.1080/00032719.2017.1287714
Fani M, Rezayi M, Pourianfar HR, Meshkat Z, Makvandi
M, Gholami M, et al. Rapid and label-free electrochemical
DNA biosensor based on a facile one-step electrochemical
synthesis of rGO–PPy–(L-Cys)–AuNPs nanocomposite for the
HTLV-1 oligonucleotide detection. Biotechnology and Applied
Biochemistry June 2020. https://doi.org/10.1002/bab.1973
Becherer L , Hess JF, Frischmann S, Bakheit M, Nitschko
H, Stinco S, et al. Point-of-care system for HTLV-1 proviral
load quantification by digital mediator displacement LAMP.
Micromachines. 2021;12:159. https://doi.org/10.3390/mi12020159
Machuca A, Soriano V. In vivo fluctuation of HTLV-I and
HTLV-II proviral load in patients receiving antiretroviral
drugs. J Acquir Immune Defic Syndr. 2000;24(2):189-93.
https://doi.org/10.1097/00126334-200006010-00017
Tamiya S, Matsuoka M, Etoh K-I, Watanabe T, Kamihira S,
Yamaguchi K, et al. Two types of defective human T-lymphotropic
virus type I provirus in Adult T-cell Leukemia. Blood 1996;88:3065-73.
https://doi.org/10.1182/blood.V88.8.3065.bloodjournal8883065
Ramirez E, Fernandez J, Cartier L, Villota C, Rios M. Defective
human T-cell lymphotropic virus type I (HTLV-I)
provirus in seronegative tropical spastic paraparesis/
HTLV‑I‑associated myelopathy (TSP/HAM) patients. Vir Res.
;91:231-9. doi: 10.1016/s0168-1702(02)00276-9
Miyazaki M, Yasunaga J-I, Taniguchi Y, Tamiya S, Nakahata T,
Matsuoka M. Preferential selection of human T-cell leukemia
virus type 1 provirus lacking the 5’ long terminal repeat during
oncogenesis. J Virol. 2007;81:5714-23. doi: 10.1128/JVI.02511-06
Takenouchi H, Umeki K, Sasaki D, Yamamoto I, Nomura
H, Takajo I, et al. Defective human T-lymphotropic virus
type 1 provirus in asymptomatic carriers. Int J Cancer.
;128:1335-43. https://doi.org/10.1002/ijc.25450
Kuramitsu M, Sekizuka T, Yamochi T, Firouzi S, Sato T,
Umeki K, et al. Proviral features of human T cell leukemia virus
type 1 in carriers with indeterminate Western blot analysis results.
J Clin Microbiol. 2017;55:2838-49. doi: 10.1128/JCM.00659-17
Hashikura Y, Umeki K, Umekita K, Nomura H, Yamada A, Yamamoto
I, et al. Infection of defective human T-lymphotropic virus type 1.
Hum Cell. 2017;30(2):117-23. doi: 10.1007/s13577-016-0156-4.
Katsuya H, Islam S, Tan BJY, Ito J, Miyazato P, Matsuo M, , Inada
Y, et al. The nature of the HTLV-1 provirus in naturally infected
individuals analyzed by the viral DNA-capture-seq approach. Cell
Reports. 2019;29:724-35. doi: 10.1016/j.celrep.2019.09.016
Campos KR, Caterino-de-Araujo A. Provirus Mutations of
Human T-Lymphotropic Virus 1 and 2 (HTLV-1 and HTLV‑2)
in HIV-1-Coinfected Individuals. mSphere. 2020 Sep
;5(5):e00923-20. https://doi.org/10.1128/mSphere.00923-20116. Blanco S, Frutos MC, Balangero MC, Gallego SV. HumanT-lymphotropic virus type 1 infection in absence of tax gene: Achallenge for molecular diagnosis. Infection, Genetics and Evolution2021;90:104765 https://doi.org/10.1016/j.meegid.2021.104765
Caterino-de-Araujo A, Campos KR. Defective particles of
human T-lymphotropic virus and negative results in molecular
assays. Infection, Genetics and Evolution 2021; (submitted)
Castro-Costa CM, Carton H, Santos TJT. HTLV-I negative
tropical sapastic paraparesis. A scientific challenge.
Arq Neuropsiquiatr. 2001;59(2-A):289-94. https://doi.
org/10.1590/S0004-282X2001000200031
Segurado ACC, Biasutti C, Zeigler R, Rodrigues C, Damas
CD, Jorge MLSG, et al. Identification of human T-lymphotropic
virus type I (HTLV-I) subtypes using restricted fragment length
polymorphism in a cohort of asymptomatic carriers and patients
with HTLV-I associated myelopathy/tropical spastic paraparesis
from São Paulo, Brazil. Mem Inst Oswaldo Cruz. 2002;97:329‑33.
https://doi.org/10.1590/S0074-02762002000300009
Colin DD, Alcântara LCJ, Santos FLN, Uchôa R, Tavares-Neto J.
Seroprevalence of human T cell lymphotropic virus infection and
associated factors of risk in blood donors of Rio Branco city, AC,
Brazil (1998-2001). Rev Soc Bras Med Trop. 2003;36(6):677‑83.
https://doi.org/10.1590/S0037-86822003000600006
Santos TJT, Costa CMC, Goubau P, Vandamme AM, Desmyter J,
Dooren SV, et al. Western blot seroindeterminate individuals for
human T-lymphotropic virus 1/2 (HTLV-1/2) in Fortaleza (Brazil):
a serological and molecular diagnostic and epidemiological
approach. Braz J Infect Dis. 2003;7(3):202-9.https://www.scielo.
br/j/bjid/a/rtbTvFnxS8dhwhtDS7bWDzr/?lang=en&format=pdf
Kashima S, Alcantara LC, Takayanagui OM, Cunha MAV,
Galvao‑Castro B, Pombo-de-Oliveira MS, et al. Distribution of human
T cell lymphotropic virus type 1 (HTLV-1) subtypes in Brazil: genetic
characterization of LTR and tax region. AIDS Res Hum Retroviruses
;22(10):953‑9. https://doi.org/10.1089/aid.2006.22.953
Pimenta FCF, Haddad SK, Medeiros Filho JG, Costa MJC,
Diniz MFM, Fernandes MP, et al. Prevalence ratio of HTLV-1
in nursing mothers from the state of Paraíba,
Northeastern Brazil. J Hum Lact. 2008;24(3):289-92.
https://doi.org/10.1177/0890334408316084
Dal Fabbro MMFJ, Cunha RV, Bóia MN, Portela P, Botelho CA,
Freitas GMB, et al. Infecção pelo HTLV 1/2: atuação no pré-natal
como estratégia de controle da doença no Estado de Mato
Grosso do Sul. Rev Soc Bras Med Trop. 2008; 41(2):148‑51.
https://doi.org/10.1590/S0037-86822008000200003
Nascimento LB, Carneiro MAS, Teles SA, Lopes CLR,
Reis NRS, Costa e Silva AM, et al. Prevalence of infection
due to HTLV-1 in remnant quilombos in Central Brazil.
Rev Soc Bras Med Trop. 2009;42(6):657-60.
https://doi.org/10.1590/S0037-86822009000600009
Martins ML, Santos AC, Namen-Lopes MS, Barbosa-Stancioli
EF,Utsch DG, Carneiro-Proietti AB. Long-term serological follow
up of blood donors with an HTLV-indeterminate western blot:
antibody profile of seroconverters and individuals with falsereactions. J Med Virol. 2010; 82:1746-53. doi: 10.1002/jmv.21881
Galetto LR, Lunge VR, Béria JU, Tietzmann DC, Stein AT,
Simon D. Prevalence and risk factors for human T
cell lymphotropic virus infection in Southern Brazilian
HIV-positive patients. AIDS Res Hum Retroviruses
;30(9):907‑11. https://doi.org/10.1089/aid.2013.0210
Martin F, Tagaya Y, Gallo R. Time to eradicate
HTLV-1: an open letter to WHO. Lancet. 2018;391:
–1894. doi:10.1016/S0140-6736(18)30974-7
International Retrovirology Association (IRVA). [Internet].
[Acesso em 11 jun 2021]. Disponível em: https://htlv.net/
Caterino-de-Araujo A. Dia Mundial do HTLV - 10 de Novembro. Rev.
Inst. Adolfo Lutz, 2018; 77:e1751. http://www.ial.sp.gov.br/resources/
insituto-adolfo-lutz/publicacoes/rial/10/rial77_completa/1751.pdf
HTLV Channel. 2020 [Internet, Youtube]. [Acesso
em 11 jun 2021] Disponível em: https://www.youtube.
com/channel/UCI6aLSTtk7chXMeybJ92Fhw
Ministério da Saúde (MS). Secretaria de Vigilância em
Saúde. Departamento de Doenças de Condições Crônicas
e Infecções Sexualmente Transmissíveis. Protocolo
Clínico e Diretrizes Terapêuticas para Atenção Integral
às Pessoas com Infecções Sexualmente Transmissíveis
(IST). 1ª edição. Brasília: MS; 2020. 248p.
Rosadas C, Brites C, Arakaki-Sanchez D, Casseb J, Ishak
R. Brazilian Protocol for Sexually Transmitted Infections
: human T-cell lymphotropic virus (HTLV) infection.
Rev Soc Bras Med Trop. 2021;54(Suppl I): e2020605
https://doi.org/10.1590/0037-8682-605-2020
I WebSimpósio de HTLV - PCDT do HTLV: 2020 - Desafios e
Perspectivas - Parte 1 [Internet]. Diagnóstico Laboratorial. [Acesso em
nov 2020]. Disponível em: https://www.youtube.com/watch?v=cd
BeUrNmnE8&list=PLcprvSVJObvc6ij_-Ep3eLJPpPITfy0xN&index=2
Episódio 24 - Diagnóstico da Infecção de HTLV: Histórico e
Desafios 2021. [Internet]. [Acesso em 20 abr 2021]. Disponível
em: https://www.youtube.com/watch?v=r2mpMuNmH6A
Word Health Organization (WHO). Human T-lymphotropic
virus type 1: technical report. Geneva: WHO; 2021. 78p.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2022 Adele Caterino-de-Araujo, Maria Gisele Gonçalves