Influence of Covid-19 social isolation measures in the Aedes aegypti breeding sites in households in the state of Sao Paulo

Authors

DOI:

https://doi.org/10.57148/bepa.2023.v.20.38743

Keywords:

pandemic, behavior, breeding sites, aedes aegypti

Abstract

Introduction: The study aimed to analyze the distribution of breeding sites registered in the aedes aegypti larval density assessment activities in a few years that preceded the Covid-19 pandemic and that followed it to verify whether the social isolation measures imposed, which resulted the longer the population stays in the residences, influenced the behavior of individuals with regard to care related to the removal of potential breeding sites and, therefore, the profile and number of types of aedes aegypti breeding sites changed in the following year to the Covid-19 pandemic. Method: Data from mosquito breeding sites from 2015 to 2019, before the pandemic, and 2021, the pandemic period, were used. The relative proportion of breeding sites per property in the State of São Paulo in years preceding the COVID-19 pandemic was compared with the year 2021 by region and state total. Results:An average of 2.5 breeding sites per property was observed in the state of São Paulo from 2015 to 2019 and 3.1 in 2021. The results show that there is no difference between the distribution of breeding sites in the years compared to the year 2021. Conclusion: Despite the restrictive social isolation measures imposed by the Covid-19 pandemic, there was no change in the distribution and number of breeding sites per property.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Gerson Laurindo Barbosa, Istituto Pasteur

Graduated in STATISTICS from Universidade Estadual Paulista Júlio de Mesquita Filho (1992). Master (2009) and Doctorate (2014) in Collective Health, concentration area in Epidemiology at the State University of Campinas. He is currently Scientific Researcher VI at the Pasteur Institute. Has experience in Public Health, Epidemiology, spatial analysis of epidemiological data.

References

Teixeira M da G, Barreto ML, Guerra Z. Epidemiologia e medidas de prevenção do dengue. Inf Epidemiol SUS. 1999;8(4):5–33.

Favier C, Degallier N, Vilarinhos P de TR, de Carvalho M do SL, Yoshizawa MAC, Knox MB. Effects of climate and different management strategies on Aedes aegypti breeding sites: a longitudinal survey in Brasília (DF, Brazil). Trop Med Int Health. julho de 2006;11(7):1104–18. DOI: https://doi.org/10.1111/j.1365-3156.2006.01653.x

Zara AL de SA, Santos SM dos, Fernandes-Oliveira ES, Carvalho RG, Coelho GE, Zara AL de SA, et al. Estratégias de controle do Aedes aegypti: uma revisão. Epidemiologia e Serviços de Saúde. junho de 2016;25(2):391–404. DOI: https://doi.org/10.5123/S1679-49742016000200017

Lima Neto AS, Nascimento OJ do, Sousa G dos S de. Dengue, zika e chikungunya - desafios do controle vetorial frente à ocorrência das três arboviroses - parte I. Revista Brasileira em Promoção da Saúde. 30 de setembro de 2016;29(3):305–12. DOI: https://doi.org/10.5020/18061230.2016.p305

Claro LBL, Tomassini HCB, Rosa MLG. Prevenção e controle do dengue: uma revisão de estudos sobre conhecimentos, crenças e práticas da população. Cad Saúde Pública. dezembro de 2004;20:1447–57. DOI: https://doi.org/10.1590/S0102-311X2004000600002

Achee NL, Gould F, Perkins TA, Jr RCR, Morrison AC, Ritchie SA, et al. A Critical Assessment of Vector Control for Dengue Prevention. PLOS Neglected Tropical Diseases. 7 de maio de 2015;9(5):e0003655. DOI: https://doi.org/10.1371/journal.pntd.0003655

Chiaravalloti Neto FC, Barbosa GL, Mota TS, Galli B, Silveira LV de A. Ocorrência de dengue e sua relação com medidas de controle e níveis de infestação de Aedes aegypti em uma cidade do sudeste brasileiro. BEPA Boletim Epidemiológico Paulista. 31 de março de 2020;17(195):3–19.

Espinosa M, Weinberg D, Rotela CH, Polop F, Abril M, Scavuzzo CM. Temporal Dynamics and Spatial Patterns of Aedes aegypti Breeding Sites, in the Context of a Dengue Control Program in Tartagal (Salta Province, Argentina). PLOS Neglected Tropical Diseases. 25 de maio de 2016;10(5):e0004621. DOI: https://doi.org/10.1371/journal.pntd.0004621

Espinosa MO, Polop F, Rotela CH, Abril M, Scavuzzo CM. Spatial pattern evolution of Aedes aegypti breeding sites in an Argentinean city without a dengue vector control programme. Geospatial Health [Internet]. 21 de novembro de 2016 [citado 8 de março de 2022];11(3). Disponível em: https://geospatialhealth.net/index.php/gh/article/view/471 DOI: https://doi.org/10.4081/gh.2016.471

Getachew D, Tekie H, Gebre-Michael T, Balkew M, Mesfin A. Breeding Sites of Aedes aegypti: Potential Dengue Vectors in Dire Dawa, East Ethiopia. Interdisciplinary Perspectives on Infectious Diseases. 7 de setembro de 2015;2015:e706276. DOI: https://doi.org/10.1155/2015/706276

Chen Y, Li N, Lourenço J, Wang L, Cazelles B, Dong L, et al. Measuring the effects of COVID-19-related disruption on dengue transmission in southeast Asia and Latin America: a statistical modelling study. The Lancet Infectious Diseases [Internet]. 2 de março de 2022 [citado 21 de março de 2022];0(0). Disponível em: https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(22)00025-1/fulltext

Conceição G, Barbosa G, Lorenz C, Bocewicz A, Santana L, Marques C, et al. Effect of social isolation in dengue cases in the state of Sao Paulo, Brazil: An analysis during the COVID-19 pandemic. Travel Medicine and Infectious Disease. 1o de agosto de 2021;44:102149. DOI: https://doi.org/10.1016/j.tmaid.2021.102149

Lorenz C, Bocewicz A, Marques C, Santana L, Chiaravalloti-Neto F, Gomes A, et al. Have measures against COVID-19 helped to reduce dengue cases in Brazil? Travel Medicine and Infectious Disease. 1o de agosto de 2020;37:101827. DOI: https://doi.org/10.1016/j.tmaid.2020.101827

R: The R Project for Statistical Computing [Internet]. Disponível em: https://www.r-project.org/

Lima MM, Aragão MB, Amaral R dos S. Criadouros de Aedes aegypti encontrados em alguns bairros da cidade do Rio de Janeiro, RJ, Brasil, em 1984-85. Cad Saúde Pública. setembro de 1988;4:293–300. DOI: https://doi.org/10.1590/S0102-311X1988000300004

Arunachalam N, Tyagi BK, Samuel M, Krishnamoorthi R, Manavalan R, Tewari SC, et al. Community-based control of Aedes aegypti by adoption of eco-health methods in Chennai City, India. Pathog Glob Health. dezembro de 2012;106(8):488–96. DOI: https://doi.org/10.1179/2047773212Y.0000000056

Caprara A, Lima JWDO, Peixoto ACR, Motta CMV, Nobre JMS, Sommerfeld J, et al. Entomological impact and social participation in dengue control: a cluster randomized trial in Fortaleza, Brazil. Trans R Soc Trop Med Hyg. fevereiro de 2015;109(2):99–105. DOI: https://doi.org/10.1093/trstmh/tru187

Healy K, Hamilton G, Crepeau T, Healy S, Unlu I, Farajollahi A, et al. Integrating the Public in Mosquito Management: Active Education by Community Peers Can Lead to Significant Reduction in Peridomestic Container Mosquito Habitats. PLOS ONE. 25 de setembro de 2014;9(9):e108504. DOI: https://doi.org/10.1371/journal.pone.0108504

Silva PC da, Martins AM, Schall VT. Cooperação entre agentes de endemias e escolas na identificação e controle da dengue. Revista Brasileira em Promoção da Saúde. 2013;26(3):404–11. DOI: https://doi.org/10.5020/18061230.2013.p404

Torres JL, Ordóñez JG, Vázquez-Martínez MG. Conocimientos, actitudes y prácticas sobre el dengue en las escuelas primarias de Tapachula, Chiapas, México. Rev Panam Salud Publica. março de 2014;35:214–8.

Bartlett-Healy K, Hamilton G, Healy S, Crepeau T, Unlu I, Farajollahi A, et al. Source reduction behavior as an independent measurement of the impact of a public health education campaign in an integrated vector management program for the Asian tiger mosquito. Int J Environ Res Public Health. maio de 2011;8(5):1358–67. DOI: https://doi.org/10.3390/ijerph8051358

Bardach AE, García-Perdomo HA, Alcaraz A, Tapia López E, Gándara RAR, Ruvinsky S, et al. Interventions for the control of Aedes aegypti in Latin America and the Caribbean: systematic review and meta-analysis. Tropical Medicine & International Health. 2019;24(5):530–52. DOI: https://doi.org/10.1111/tmi.13217

World Health Organization. Global Vector Control Response 2017-2030. 2017. 64 p.

LaCon G, Morrison AC, Astete H, Stoddard ST, Paz-Soldan VA, Elder JP, et al. Shifting Patterns of Aedes aegypti Fine Scale Spatial Clustering in Iquitos, Peru. PLoS Neglected Tropical Diseases. agosto de 2014;8(8):e3038–e3038. DOI: https://doi.org/10.1371/journal.pntd.0003038

CARLUCCI, M.; VINCI, S.; LAMONICA, G. R.; SALVATI, L. Socio-spatial Disparities and

the Crisis: Swimming Pools as a Proxy of Class Segregation in Athens. Social Indicators

Research. 2020. https://doi.org/10.1007/s11205-020-02448-y DOI: https://doi.org/10.1007/s11205-020-02448-y

AYUSH, K.; UZKENT, B.; BURKE, M.; LOBELL, D.; ERMON, S. Generating Interpretable Poverty

Maps using Object Detection in Satellite Images. arXiv:2002.01612v2 [cs.CV] 18 Feb 2020.

Available from: https://arxiv.org/pdf/2002.01612.pdf

Published

2023-03-29

How to Cite

1.
Barbosa GL, Marques CC de A. Influence of Covid-19 social isolation measures in the Aedes aegypti breeding sites in households in the state of Sao Paulo. Bepa [Internet]. 2023 Mar. 29 [cited 2024 Jul. 22];20:e38743. Available from: https://periodicos.saude.sp.gov.br/BEPA182/article/view/38743

Issue

Section

Original Article

Most read articles by the same author(s)