Características físicas, químicas e retenção de licopeno em tomates secos submetidos a diferentes pré-tratamentos
PDF (English)

Palavras-chave

tomate seco
desidratação osmótica
licopeno

Como Citar

1.
Abreu WC de, Barcelos MF da P, Silva EP, Vilas Boas EV de B. Características físicas, químicas e retenção de licopeno em tomates secos submetidos a diferentes pré-tratamentos. Rev Inst Adolfo Lutz [Internet]. 1º de fevereiro de 2011 [citado 3º de janeiro de 2025];70(2):168-74. Disponível em: https://periodicos.saude.sp.gov.br/RIAL/article/view/32567

Resumo

Este estudo avaliou as características físicas e químicas (umidade, pH, acidez titulável, sólidos solúveis e cor) e a retenção de licopeno em tomates secos submetidos a diferentes pré-tratamentos. Os tomates foram cortados longitudinalmente e submetidos à desidratação osmótica por 120 minutos. Foram utilizadas seis soluções osmóticas com as seguintes concentrações: NaCl 5%, NaCl 10%, NaCl 5% + sacarose 10%, NaCl 10% + sacarose 5%, sacarose 5%, sacarose 10% (p/v). Foi também realizada desidratação osmótica com aplicação direta dos solutos (NaCl ou mistura de NaCl + sacarose). Em seguida, os tomates foram submetidos à secagem, a 65°C, durante 12 horas. A secagem osmoconvectiva promoveu aumento do teor de sólidos solúveis, acidez titulável e redução do pH, exceto para soluções de sacarose que não alteraram o pH dos tomates. As soluções ternárias (NaCl + sacarose), binária (NaCl 10%) e a aplicação direta dos solutos promoveram redução significativa da umidade em relação ao controle. As soluções osmóticas contendo apenas sacarose ou com NaCl 5% determinaram retenção de licopeno significativamente superior aos demais tratamentos. A utilização da desidratação osmótica como pré-tratamento para secagem do tomate pode contribuir para acelerar o processo de secagem e preservar o teor de licopeno de tomates.

https://doi.org/10.53393/rial.2011.v70.32567
PDF (English)

Referências

1. Sobreira FM, Almeida GD, Coelho RI, Rodrigues R, Matta FP. Qualidade de sabor de tomates dos tipos salada e cereja e sua relação com caracteres morfoagronômicos dos frutos. Ciênc Agrotecnol. 2010;34(4):1015-23.

2. Kobori CN, Huber LS, Kimura M, Rodriguez-Amaya DB. Teores de carotenoides em produtos de tomate. Rev Inst Adolfo Lutz. 2010;69(1):78-83.

3. Shen YC, Chen SL, Wang CK. Contribution of tomato phenolics to antioxidation and down-regulation of blood lipids. J Agric Food Chem. 2007;55(16):6475-80.

4. Camargo GA, Haj-Isa N, Queiroz MR. Avaliação da qualidade de tomate seco em conserva. Rev Bras Eng Agríc Amb. 2007;11(5):521-6.

5. Corrêa JLG, Filho EDS, Batista MB, Arola F, Fioreze R. Desidratação osmótica de tomate seguida de secagem. Rev Bras Prod Agro. 2008;10(1):35-42.

6. Tonon RV, Baroni AF, Hubinger MD. Estudo da desidratação osmótica de tomate em soluções ternárias pela metodologia de superfície de resposta. Cienc Tecnol Alim. 2006;26(3):715-23.

7. Gomes AT, Cereda MP, Vilpoux O. Desidratação osmótica: uma tecnologia de baixo custo para o desenvolvimento da agricultura familiar. Rev Bras Ges Des Reg. 2007;3(3):212-26.

8. Association of Official Analytical Chemistry. Official methods of analysis of the Association of Official Analytical Chemistry. 18thed. Gaithersburg; 2005.

9. Instituto Adolfo Lutz (São Paulo - Brasil). Normas analíticas do Instituto Adolfo Lutz: métodos químicos e físicos para análise de alimentos. 3ª ed. São Paulo (SP): Instituto Adolfo Lutz; 1985. v. 1, 371 p.

10. Nagata M, Yamashita I. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. J Japan Soc Food Technol. 1992; 39(10):925-8.

11. Ferreira DF. Análises estatísticas por meio do Sisvar para Windows versão 4.0. In: Reunião Anual da Região Brasileira da Sociedade internacional de Biometria, 45., 2000, São Carlos. Anais... São Carlos: UFSCar; 2000. p. 255-8.

12. Sereno AM, Hubinger MD, Comesana JF, Correa A. Prediction of water activity of osmotic solutions. J Food Eng. 2001;49(2/3):103-14.

13. Venske C, Santos J, Raupp DS, Grandigo JR, Borsato AV. Influência do grau de maturação nas características sensoriais de tomate seco envasado em óleo. Publ. UEPG Ci. Exatas Terra, Ci. Agr. Eng. 2004;10(3):33-40.

14. Monteiro CS, Balbi ME, Miguel OG, Penteado PTPS, Haracemiv SMC. Qualidade nutricional e atividade antioxidante do tomate “tipo italiano”. Alim Nutr. 2008;19(1):25-31.

15. Silva VKL, Pinheiro ESP, Domingues MAF, Aquino AC, Figueredo EA, Costa JMC, et al. Efeito da pressão osmótica no processamento e avaliação da vida de prateleira de tomate seco. Semina Cienc Agrar. 2010;31(1):55-66.

16. Anese M, Falcone P, Fogliano V, Nicolli MC, Massini R. Effect of equivalent thermal treatments on the color and the antioxidant activity of tomato purees. J Food Sci. 2002;67(9):3442-6.

17. Lisiewska S, Kmiecik W. Effect of storange period and temperature on the chemical composition and organoleptic quality of frozen tomato cubes. Food Chem. 2000;70(2):167-73.

18. Muratore G, Rizzo V, Licciardello F, Maccarone E. Partial dehydration of cherry tomato at different temperature and nutritional quality of the products. Food Chem. 2008;111(4):887-91.

19. Toor RK, Savage GP, Heeb A. Influence of different types of fertilisers on the major antioxidant components of tomatoes. J Food Comp Anal. 2006;19(1):20-7.

20. Mayeaux M, Xu A, King JM, Prinyawiwatkul W. Effects of cooking conditions on the lycopene content in tomatoes. J Food Sci. 2006;71(8):461-4.

21. Periago MJ, Rincon F, Jacob BK, Garcia-Alonso J, Ros G. Detection of key factors in the extraction and quantification of lycopene from tomato and tomato products. J Agric Food Chem. 2007;55(22):8825-9.

22. Tonon RV, Baroni AF, Hubinger MD. Osmotic dehydration of tomato in ternary solutions: Influence of process variables on mass transfer kinetics and an evaluation of the retention of carotenoids. J Food Engin. 2007;82(4):509-17.

23. Shi J, Le Maguer M, Kakuda Y, Lipitay A, Niekamp F. Lycopene degradation and isomerization in tomato dehydration. Food Res Int. 1999;32(1):15-21.

24. Rodriguez-Amaya DB. Latin American food sources of carotenoids. Arch Latinoam Nutr. 1999;49(3):74-84.

25. Mandala IG, Anagnostaras EF, Oikonomou CK. Influence of osmotic dehydration conditions on apple air-drying kinetics and their quality characteristics. J Food Engin. 2005;69(3):307-16.

26. Sanjinez-Argandon AEJ, Cunha EJ, Menegalli FC, Hubinger MD. Evaluation of total carotenoids and ascorbic acid in osmotic pretreated guavas during convective drying. Ital J Food Sci. 2005;17(3):305-14.

27. Camelo AFL, Gómez PA. Comparison of color indexes for tomato ripening. Hortic Bras. 2004;22(3):534-37.

28. Cámara M, Matallana MC, Sánchez-Marta MC, Liko AR, Labra E. Lycopene and hydroxymethylfurfural (HMF) evaluation in tomato products. Acta Hortic. 2003;1(613):365-71.

29. Heredia A, Peinado I, Rosa E, Andrés A. Effect of osmotic pre-treatment and microwave heating on lycopene degradation and isomerization in cherry tomato. Food Chem. 2010;123(1):92-8.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2011 Wilson César de Abreu, Maria Fátima da Piccolo Barcelos, Edson Pablo Silva, Eduardo Valério de Barros Vilas Boas

Downloads

Não há dados estatísticos.