Validação intralaboratorial de metodologia quantitativa para determinação de L-fenilalanina em farinha de trigo por espectrofotometria derivada segunda
PDF

Palavras-chave

L-fenilalanina
farinha de trigo
espectrofotometria derivada segunda
validação de métodos

Como Citar

1.
Carreira RL, Ramos CS, Mundim LA, Lima LG, Souza SVC de, Silvestre MPC. Validação intralaboratorial de metodologia quantitativa para determinação de L-fenilalanina em farinha de trigo por espectrofotometria derivada segunda. Rev Inst Adolfo Lutz [Internet]. 1º de abril de 2009 [citado 2º de maio de 2024];68(2):278-8. Disponível em: https://periodicos.saude.sp.gov.br/RIAL/article/view/32728

Resumo

O objetivo deste trabalho foi validar um método quantitativo para determinação de L-fenilalanina (Fen) em farinha de trigo por espectrofotometria derivada segunda. A amostra de farinha de trigo, na quantidade de 0,525g, foi submetida à hidrólise ácida com HCl a 5,7 mol/L, a 110 °C, por 24 h. O material hidrolisado foi reconstituído para 50 mL com tampão fosfato de sódio a 0,1 mol/L, pH 7,0. As soluções preparadas a partir dessa amostra foram submetidas às leituras de absorvância, entre 230 nm e 280 nm, em espectrofotômetro UV/VIS. Os espectros de derivada segunda foram traçados e os valores das áreas dos picos negativos foram utilizados para estimar os teores de Fen. A linearidade do método foi demonstrada na faixa de 0,010 mg/mL a 0,035 mg/mL (correspondente a teores de 251 mg/100g a 877 mg/100g de Fen em farinha de trigo). Efeitos de matriz foram observados. A determinação de Fen não sofreu interferência de compostos como L-tirosinae L-triptofano. As porcentagens de recuperação variaram de 81 % a 118 % e os desvios padrão relativos de repetitividade e reprodutibilidade parcial foram respectivamente 11 % e 15 %, para amostras contendo 354 mg/100g, demonstrando adequada recuperação e precisão do método. Os limites de detecção e quantificação foram, respectivamente, 63 mg/100ge 175 mg/100g. Os parâmetros de desempenho estudados indicaram adequação do método para o monitoramento e controle de teores de Fen em farinha de trigo.
https://doi.org/10.53393/rial.2009.v68.32728
PDF

Referências

1. Ramaswami U, Smith I. Phenylketonuria. Curr Paediatrics. 1997; 7: 251-255.

2. Starling ALP, Aguiar MJB, Kanufre VC, Soares SF. Fenilcetonúria. Rev Méd Minas Gerais. 1999; 9: 106-10.

3. Mira NVM, Marquez UML. Importância do diagnóstico e tratamento da fenilcetonúria. Rev Saúde Publ. 2000; 34: 86-96.

4. Hendriksz CJ, Walter JH. Update on phenylketonuria. Curr Paediatrics. 2004; 14: 400-6.

5. Marco D, Waitzberg DL. Erros congênitos do metabolismo – fenilcetonúria. In: Waitzberg DL. Nutrição oral, enteral e parenteral na prática clínica. 3.ed. São Paulo: Atheneu; 2004. p. 449-57.

6. Lopez-Bajonero LJ, Lara-Calderon P, Galvez-Mariscal A, Velasquez-Arellano A, Lopez-Munguia A. Enzymatic production of a low-phenylalanine product from skim milk powder and caseinate. J Food Sci. 1991; 56: 938-42.

7. Martins AM, Fisberg RM, Schmidt BJ. Fenilcetonúria: abordagem terapêutica. São Paulo: Nestlé; 1993.

8. Shimamura S, Tamura Y, Miyakawa H, Saito H, Kawaguchi Y, Isomura N, et al. Peptide mixture and products thereof. Morinaga Milk Industry Co., Ltd., Tokio, Japan, Patents US 5952193, A23C 21/02; A23C 21/04; A23C 21/06; A61K 38/01. 1997 Apr 14; 1999 Sep 14.

9. Piecyk M, Srama A, Bzducha A, Obiedzinski M. Application of HPLC and GC/MS to quantifi cation of phenylalanine in chosen kinds of food for particular nutritional uses. Acta Sci Pol Technol Aliment. 2007; 6( 2): 5-18.

10. Keohane PP, Grimble GK, Brown B, Spiller RC. Infl uence of protein composition and hydrolysis method on intestinal absorption of protein in man. Gut. 1985; 26: 907-13.

11. Grimble GK, Keohane PP, Higgins BE, Kaminsk Jr MV, Silk DBA. Effect of peptide chain length on amino acid and nitrogen absortion from two lactoalbumin hydrolysates in the normal human jejunum. Clin Sci. 1986; 71: 65-9.

12. Carreira RL, Barbosa CMS, Junqueira RG, Motta S, Silvestre MPC. Emprego da cromatografi a líquida de alta efi ciência hidrofílica na determinação dos aminoácidos de hidrolisados de caseína. Ciênc Tecnol Aliment. 2002; 22 (3): 229-32.

13. O’Haver TC, Green GL. Numerical error analysis of derivative spectrometry for the quantitative analysis of mixtures. Anal Chem. 1976; 48 (2).

14. Ragone R, Colonna G, Balestrieri C, Servillo L, Irace G. Determination of tyrosine exposure in proteins by second derivative spectroscopy. Biochem. 1984; 23: 1871-5.

15. Grant A, Bhattacharyya PK. Application of derivative spectroscopy to the determination of chromatographic peak purity. J Chromatog A. 1985; 347: 219-35.

16. Rojas FS, Ojeda CB, Pavon JMC. Derivative ultraviolet-visible region absorption spectrophotometry and its analytical applications. Talanta. 1988; 35: 753-61.

17. Ichikawa T, Terada H. Second derivate spectrophotometry as an effective tool for examining phenylalanine residues in proteins. Biochim Biophys Acta. 1977; 494: 267-70.

18. Ichikawa T, Terada H. Estimation of state and amount of phenylalanine residues in proteins by second derivative spectrophotometry. Biochim Biophys Acta. 1979; 580: 120-8.

19. Ichikawa T, Terada H. Determination of phenylalanine, tryptophan and tyrosine in a mixture of amino acids by second derivative spectrophotometry. Chem Pharm Bull. 1981; 29 (2): 438-44.

20. Ichikawa T, Terada H. Effect of dodecyl sulfate on the spectral properties of phenylalanil residues in serum albumin detected by second derivative spectrophotometry. Biochim Biophys Acta. 1981; 671 (1): 33-7.

21. Brandts JF, Kaplan LJ. Derivate spectroscopy applied to tyrosiyl chromophores. Studies on ribonuclease, lima bean inhibitors, insulin, and pancreatic trypsin inhibitor. Biochem. 1973; 12 (10): 2011-24.

22. Matsushima A, Inoue Y, Shibata K. Derivate absortion spectrophotometry of native proteins. Anal Biochem. 1975; 65 (3): 362-68.

23. Cahill JE, Padera FG. Derivative analysis of UV/visible spectra. American Laboratory. 1980; 12: 101-12.

24. Morais HA, Marco LM, Oliveira MC, Silvestre MPC. Casein hydrolysates using papain: peptide profi le and encapsulation in liposomes. Acta Alim. 2005; 34 (1): 59-69.

25. Soares RDL, Biasutti EAR, Capobiango M, Vieira CR, Silva VDM, Januário JN, Aguiar MJB, Silvestre MPC. Preparation of enzymatic skim milk hydrolysates with low phenylalanine content. Acta Farmac Bonaer. 2006; 25: 325-32.

26. Lopes DCF, Delvivo FM, Silvestre MPC. Hydrolysates of skim milk powder: peptide profi les for dietetic purposes. Brit Food J. 2005; 107 (1): 42-53.

27. Capobiango M, Lopes DCF, Carreira RL, Afonso WO, Segall SD, Silvestre MPC. Optimization of enzyme assisted processes for extracting and hydrolysing corn proteins aiming phenylalanine removal. Int J Food Eng. 2007; 3: 1-19.

28. Lopes DCF, Bizzotto CS, Silva VDM, Afonso WO, Lopes Jr CO, Silvestre MPC. Obtention of low-phenylalanine protein hydrolysates from rice: use of two pancreatins. J Food Technol. 2008; 6: 57-65.

29. Vieira CR, Lopes Jr CO, Ramos CS, Capobiango M, Silvestre MPC. Extração enzimática das proteínas da farinha de arroz. Ciênc Tecnol Alimen. 2008; 28: 599-606.

30. NUPAD – Núcleo de ações e pesquisas em apoio diagnóstico. [acesso em: 15 de outubro de 2008]. Disponível em: < http://www.nupad.medicina.ufmg.br>.

31. King B. In-house method validation. A guide for chemical laboratories. LGC Limited. 2003.

32. Thompson M, Ellison SLR, Wood R. Harmonized guidelines for single-laboratory validation of methods of analysis. Pure Appl Chem. 2002; 74: 835-55.

33. Souza SVC, Lima JA, Teodoro JC, Junqueira RG. Validação intralaboratorial de método quantitativo para determinação múltipla de resíduos de avermectinas em leite bovino por cromatografia líquida de alta eficiência com detecção de fl uorescência. Ciênc Tecnol Aliment. 2007; 27 (4): 787-92.

34. Souza SVC, Pinto CT, Junqueira RG. In-house method validation: application in arsenic analysis. Journal of Food Composition and Analysis. 2007; 20: 241-47.

35. Souza SVC, Junqueira RG, Ginn R. Analysis of semicarbazide in baby food by liquid chromatography tandem mass spectrometry (LC-MS-MS) - In-house method validation. J Chromatogr A. 2005; 1077: 151-8.

36. Souza SVC, Junqueira RG. A procedure to assess linearity by ordinary least squares method. Analytica Chimica Acta. 2005; 552: 25-35.

37. Meyer PC, Zund RE. Statistical methods in analytical chemistry. New York: John Wiley & Sons; 1993.

38. Belsley DA, Kuh E, Welsch RE. Regression diagnostics: identifying infl uential data and sources of collinearity. New York: Wiley; 1980.

39. Horwitz W. Protocol for the design, conduct and interpretation of method-performance studies. Pure Appl Chem. 1995; 67: 331-43.

40. Ryan TA, Joiner BL. Normal probability plots and tests for normality. The State College: Pennsylvania State University; 1976.

41. Levene H. Robust tests for equality of variances. In: Olkin I, Ghurye SG, Hoeffding W, Madow WG, Mann HB. (Ed.) Contributions to probability and statistics. Stanford: Stanford University Press; 1960. p. 278-92.

42. Brown MB, Forsythe AB. Robust tests for the equality of variance. J Am Stat Assoc. 1974; 69: 364-7.

43. Durbin J, Watson GS. Testing for serial correlation in least squares regression ii. Biometrika. 1951; 38: 159-78.

44. Draper N, Smith H. Applied regression analysis. New York: Wiley; 1998.

45. Snedecor GW, Cochran WG. Statistical methods. Ames: Iowa State University; 1989.

46. Armitage P, Berry G. Statistical methods in medical research. Oxford: Blackwell Science Ltd.; 1994.

47. USDA (United States Department of Agriculture). Human Nutrition Information Service. Agriculture Handbook. Composition of Foods: Cereal Grains and Pasta. Number 8-20, 1989. Modifi ed From Drake, D.L., S.E. Gebhardt, R.H. Matthews. Updated: Friday, May 26, 2006. [acesso em: 08 de junho de 2008]. Disponível em: <http://food.oregonstate.edu/g/comp/ compa.html>.

48. Grubbs F. Procedures for detecting outlying observations in samples. Technometrics. 1969; 11: 1-21.

49. Barret V, Lewis T. Outliers in statistical data. 3 ed. New York: John Wiley; 1994.

50. Burke S. Missing values, outliers, robust statistics & non-parametric methods. LC GC. 2001; 19-24.

51. EC (European Commission). Commission decision 2002/657/EC of 12 August 2002. Implementing Council Directive 96/23/EC concerning performance of analytical methods and the interpretation of results. Official Journal of the European Communities, 2002, L 221/8.

52. ISO (International Standards Organization). ISO 5725-1. Accuracy (trueness and precision) of measurement methods and results - Parts 1, 2, 3, 4 and 6. Geneva: ISO; 1994.

53. ISO (International Standards Organization). ISO 5725-5. Accuracy (trueness and precision) of measurement methods and results - Part 5. Geneva: ISO; 1998.

54. Kuttatharmmakul S, Massart DL, Smeyers-Verbeke J. Comparison of alternative measurement methods. Anal Chim Acta. 1999; 391: 203-25.

55. Maroto A, Riu J, Boqué R, Rius FX. Estimating uncertainties of analytical results using information from the validation process. Anal Chim Acta. 1999; 391: 173-85.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2009 Raquel Linhares Carreira, Camila Salles Ramos, Lidiane Amorim Mundim, Letícia Gonçalves Lima, Scheilla Vitorino Carvalho de Souza, Marialice Pinto Coelho Silvestre

Downloads

Não há dados estatísticos.