Avaliação das atividades antiproliferativa e antioxidante em frutos de Campomanesia pubescens
PDF

Palavras-chave

guavira
Campomanesia pubescens
DPPH
antiproliferativa
chalconas

Como Citar

1.
Cardoso CAL, Salvador MJ, Carvalho JE, Carvalho RG. Avaliação das atividades antiproliferativa e antioxidante em frutos de Campomanesia pubescens. Rev Inst Adolfo Lutz [Internet]. 25º de abril de 2013 [citado 6º de janeiro de 2025];72(4):309-15. Disponível em: https://periodicos.saude.sp.gov.br/RIAL/article/view/32933

Resumo

A investigação química dos extratos bioativos dos frutos de Campomanesia pubescens (Myrtaceae) resultou no isolamento de duas chalconas. Os compostos isolados foram identificados pelas análises espectroscópicas (1H, 13C e 2D RMN) e, por comparação com os dados descritos na literatura. A capacidade antioxidante dos extratos e frações foi determinada utilizando-se os ensaios de capacidade de absorção de oxigênio radical (ORAC-FL) e de DPPH; e os teores de fenólicos solúveis foram medidos utilizando-se o reagente de Folin-Ciocalteau. Os efeitos antiproliferativos dos extratos e de isolados de chalconas 1 e 2 foram determinados in vitro contra as seguintes células cancerosas humanas U251 (glioma), UACC-62 (melanoma), MCF-7 (mama), NC1-ADR/RES (ovário resistente), 786,0 (rim), NCI-H460 (pulmão), PC-3 (próstata), OVCAR-3 (ovário), HT-29 (cólon) e K562 (leucemia), e contra linhagem celular não cancerígena VERO. O extrato hexânico e os compostos isolados de chalconas 1 e 2 demonstraram efeito antiproliferativo potente contra linhagens de células cancerosas com valores de inibição de crescimento total (TGI) menores dos aqueles observados na linhagem celular controle. A atividade mais elevada das chalconas 1 e 2 foi detectada nas células MCF-7, PC-3 e HT-29.
https://doi.org/10.18241/0073-98552013721579
PDF

Referências

1. Barbosa CES, Silveira-Lacerda EDP. Toxicidade aguda em dose simples do composto experimental cis-tetraaminoxalatorutênio (III). Infarma. 2006;18(11): 14-6.

2. Kingston DGI, Newman DJ. Wiley Encyclopedia of Chemical Biology. London: John Wiley & Sons; 2009, p. 249-60.

3. Pilatova M, Varinska L, Perjesi P, Sarissky M, Mirossay L, Solar P, et al. In vitro antiproliferative and antiangiogenic effects of synthetic chalcone analogues. Toxicol in Vitro. 2010;24:1347–55.

4. Zakaria ZA, Rofiee MS, Mohamed AM, Teh LK, Salleh MZ. In Vitro Antiproliferative and Antioxidant Activities and Total Phenolic Contents of the Extracts of Melastoma malabathricumLeaves. J Acupunct Meridian Stud. 2011;4(4):248-56.

5. Limberger RP, Apel MA, Sobral M., Moreno PRH, Henriques AT, Menu C. Aromatic plant from Brazil-chemical composition of essential oils from some Campomanesia species (Myrtaceae). J Essent Oil Res. 2001;13(2):113-5.

6. Ferreira LC, Guimarães AG, Paula CA, Michel MCP, Guimarães R G, Rezende AS, et al. Anti-inflammatory and antinociceptive activities of Campomanesia adamantium. J Ethnopharmacol. 2013;145:100-8.

7. Moura-Costa GF, Nocchi SR, Coelle LF, Mello JCP, Nakamura CV, Dias Filho BP, et al. Antimicrobial activity of plants used as medicinal sonan indigenous reserve in Rio das Cobras, Parana, Brazil. J. Ethnopharmacol. 2012;143:631-8.

8. Lorenzi H, Sartori SF, Bacher LB, Lacerda MTC. Frutas Brasileiras e Exóticas Cultivadas – (de consumo in natura). Nova Odessa: Instituto Plantarum de Estudos da Flora; 2006.

9. Cardoso CAL, Salmazzo GR, Honda NK, Prates CB, Vieira MC, Coelho RG. Antimicrobial Activity of the Extracts and Fractions of Hexanic Fruits of Campomanesia Species (Myrtaceae). J Med Food. 2010;13(5):1273-6.

10. Pavan FR, Leite CQF, Coelho RG, Coutinho ID, Honda NK, Cardoso CAL, et al. Evaluation of anti-Mycobacterium tuberculosis activity of Campomanesia adamantium (Myrtaceae). Quim Nova. 2009;32:1222-6.

11. Bandgar BP, Gawande SS, Bodade RG, Totre JV, Khobragade CN. Synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti-inflammatory and antioxidant agents. Bioorgan Med Chem. 2010;18:1364-70.

12. Nielsen SF, Boesen T, Larsen M, Schønning K, Kromann H. Antibacterial chalcones-bioisosteric replacement of the 40-hydroxy group. Bioorgan Med Chem. 2004;12:3047-54.

13. Cardoso CAL, Silva JRM, Kataoka VMF, Brum CS, Poppi NR. Avaliação da atividade antioxidante, toxicidade e composição química por CG-EM do extrato hexânico das folhas de Campomanesia pubescens. Rev Cien Farm Bas Aplic.2008;29:297-301.

14. Kähkönen MP, Hopia AI, Vuorela HJ, Ranha J, Pihlaja K, Kujala TS, et al. Antioxidant activity plants extracts containing phenolics compounds. J Agric Food Chem. 1999;47:3954-62.

15. Noguch N, Niki E. Phenolic antioxidants: A rationale for design and evaluation of novel antioxidant drugs for atherosclerosis. Free Rad Biol Med. 2000;28:1538-46.

16. Halliwell B. Antioxidants and human disease: a general introduction. Nutr Rev. 1997;55:544-52.

17. Meyer BN, Ferrigni NR, Putnam JF, Jacobsen LB, Nichols DE, Mclaughlin JL. Brine shrimp a convenient general bioassay for active plant constituents. Planta Med. 1982;45:31-5.

18. Zani CL, Chaves PPG, Queiroz R, Menes NM, Oliveira AB, Cardoso JE, et al. Brine shrimp lethality assay as a prescreening system for anti-Trypasoma cruzi activity. Phytomed.1995;2:47-54.

19. Schmeda-Hirschmann G. Flavonoids from Calycorectes, Campomanesia, Eugenia and Hexachlamys species. Fitoter.1995;66:373-4.

20. Córdova MM, Wernerb MFP, Silva MD, Ruanic AP, Pizzolatti MG, Santos ARS. Further antinociceptive effects of myricitrin

in chemical models of overt nociception in mice. Neurosci Lett. 2011;495:173-7.

21. Meotti FC, Luiz AP, Pizzolatti MG, Kassuya CA, Calixto JB, Santos AR. Analysis of the antinociceptive effect of the flavonoid myricitrin: evidence for a role of the l-arginine–nitric oxide and protein kinase C pathways. J Pharmacol Exp Ther. 2006;316:789-96.

22. Salvador MJ, Ferreira EO, Mertens-Talcott SU, Castro WV, Butterweck V, Derendorf H, et al. Isolation and HPLC quantitative analysis of antioxidant flavonoids from Alternanthera tenella Colla. Zeitschrift Fur Naturforschung C. 2006;61:19-25.

23. Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, et al. Feasibility of a High-Flux Anticancer Drug Screen Using a Diverse Panel of Cultured Human Tumor Cell Lines. J Natl Cancer Inst.1991;83:757-66.

24. Agrawal PK. Carbon-13 NMR of Flavonoids. Amsterdam: Elsevier; 1989, p 95-235.

25. Belofsky G, Percivill D, Lewis K, Tegos GP, Ekart J. Phenolic metabolites of Dalea versicolor that enhance antibiotic activity against model pathogenic bacteria.J Nat Prod. 2004;67:481-4.

26. Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J Agric Food Chem. 2005;53:1841-56.

27. Go ML, Wu X, Liu XL. Chalcones: an update on cytotoxic and chemoprotective properties. Curr Med Chem. 2005;12:483-99.

28. Simirgiotis MJ, Adachi S, To S, Yang H, Reynertson KA, Basile M J, et al. Cytotoxic chalcones and antioxidants from the fruits of Syzygium samarangense (Wax Jambu). Food Chem. 2008;107:813-9.

29. Andrade Cunha GM, Fontenele JB, Nobre Júnior HV, De Sousa FCM, Silveira ER, Nogueira NAP, et al. Cytotoxic Activity of Chalcones Isolated from Lonchocarpus Sericeus (Pocr.) Kunth. Phytother Res. 2003;17:155-9.

30. Ye C-L, Qian F, Wei D-Z, Lu Y-H, Liu J-W. Induction of apoptosis in K562 human leukemia cells by 2’,4’-dihydroxy-6’-methoxy-3’,5’-dimethylchalcone. Leukemia Res. 2005;29:887-92.

31. Ye CL, Liu JW, Wei DZ, Lu YH, Qian F. In vitro anti-tumor activity of 2’,4’-dihydroxy-6’-methoxy-3’,5’- dimethylchalcone against six established human cancer cell lines. Pharmacol Res. 2004;50:505-10.

32. Zakaria ZA, Rofiee MS, Mohamed AM, Teh LK, Salleh MZ. In Vitro Antiproliferative and Antioxidant Activities and Total Phenolic Contents of the Extracts of Melastoma malabathricumLeaves. J Acupunct Meridian Stud. 2011;4:248-56.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2013 Claudia Andrea Lima Cardoso, Marcos José Salvador, João Ernesto Carvalho, Roberta Gomes Carvalho

Downloads

Não há dados estatísticos.