Evaluation of antioxidant and antiproliferative activities in fruits of Campomanesia pubescens
PDF (Português (Brasil))

Keywords

guavira
Campomanesia pubescens
DPPH
antiproliferative
chalcones

How to Cite

1.
Cardoso CAL, Salvador MJ, Carvalho JE, Carvalho RG. Evaluation of antioxidant and antiproliferative activities in fruits of Campomanesia pubescens. Rev Inst Adolfo Lutz [Internet]. 2013 Apr. 25 [cited 2024 Jul. 22];72(4):309-15. Available from: https://periodicos.saude.sp.gov.br/RIAL/article/view/32933

Abstract

Chemical investigation on the bioactive extracts from fruits of Campomanesia pubescens (Myrtaceae) resulted in the isolation of two chalcones. The isolated compounds were identified by means of spectroscopic analysis (1H, 13C and 2D NMR), and by comparing with the data reported in the specific literature. Antioxidant capacity of extracts and fractions was determined using the oxygen radical absorbance capacity (ORAC-FL) and DPPH assays; and the total soluble phenolic contents were measured by using Folin-Ciocalteau reagent. The anti-proliferative effects of the extracts and of the chalcone isolates 1 and 2 were determined in vitro against human cancer cells lineages U251 (glioma), UACC-62 (melanoma), MCF-7 (breast), NC1-ADR/RES (ovarian-resistant), 786.0 (kidney), NCI-H460 (lung), PC-3 (prostate), OVCAR-3 (ovarian), HT-29 (colon) and K562 (leukemia), and against non-cancerous cell line VERO. Hexanic extract and chalcone isolated compounds 1 and 2 showed potent antiproliferative effect against cancer cell lineages with lower total growth inhibition (TGI) values than those found in control cell line. The highest activity of the chalcones 1 and 2 was observed against the MCF-7, PC-3 and HT-29 cell lines.
https://doi.org/10.18241/0073-98552013721579
PDF (Português (Brasil))

References

1. Barbosa CES, Silveira-Lacerda EDP. Toxicidade aguda em dose simples do composto experimental cis-tetraaminoxalatorutênio (III). Infarma. 2006;18(11): 14-6.

2. Kingston DGI, Newman DJ. Wiley Encyclopedia of Chemical Biology. London: John Wiley & Sons; 2009, p. 249-60.

3. Pilatova M, Varinska L, Perjesi P, Sarissky M, Mirossay L, Solar P, et al. In vitro antiproliferative and antiangiogenic effects of synthetic chalcone analogues. Toxicol in Vitro. 2010;24:1347–55.

4. Zakaria ZA, Rofiee MS, Mohamed AM, Teh LK, Salleh MZ. In Vitro Antiproliferative and Antioxidant Activities and Total Phenolic Contents of the Extracts of Melastoma malabathricumLeaves. J Acupunct Meridian Stud. 2011;4(4):248-56.

5. Limberger RP, Apel MA, Sobral M., Moreno PRH, Henriques AT, Menu C. Aromatic plant from Brazil-chemical composition of essential oils from some Campomanesia species (Myrtaceae). J Essent Oil Res. 2001;13(2):113-5.

6. Ferreira LC, Guimarães AG, Paula CA, Michel MCP, Guimarães R G, Rezende AS, et al. Anti-inflammatory and antinociceptive activities of Campomanesia adamantium. J Ethnopharmacol. 2013;145:100-8.

7. Moura-Costa GF, Nocchi SR, Coelle LF, Mello JCP, Nakamura CV, Dias Filho BP, et al. Antimicrobial activity of plants used as medicinal sonan indigenous reserve in Rio das Cobras, Parana, Brazil. J. Ethnopharmacol. 2012;143:631-8.

8. Lorenzi H, Sartori SF, Bacher LB, Lacerda MTC. Frutas Brasileiras e Exóticas Cultivadas – (de consumo in natura). Nova Odessa: Instituto Plantarum de Estudos da Flora; 2006.

9. Cardoso CAL, Salmazzo GR, Honda NK, Prates CB, Vieira MC, Coelho RG. Antimicrobial Activity of the Extracts and Fractions of Hexanic Fruits of Campomanesia Species (Myrtaceae). J Med Food. 2010;13(5):1273-6.

10. Pavan FR, Leite CQF, Coelho RG, Coutinho ID, Honda NK, Cardoso CAL, et al. Evaluation of anti-Mycobacterium tuberculosis activity of Campomanesia adamantium (Myrtaceae). Quim Nova. 2009;32:1222-6.

11. Bandgar BP, Gawande SS, Bodade RG, Totre JV, Khobragade CN. Synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti-inflammatory and antioxidant agents. Bioorgan Med Chem. 2010;18:1364-70.

12. Nielsen SF, Boesen T, Larsen M, Schønning K, Kromann H. Antibacterial chalcones-bioisosteric replacement of the 40-hydroxy group. Bioorgan Med Chem. 2004;12:3047-54.

13. Cardoso CAL, Silva JRM, Kataoka VMF, Brum CS, Poppi NR. Avaliação da atividade antioxidante, toxicidade e composição química por CG-EM do extrato hexânico das folhas de Campomanesia pubescens. Rev Cien Farm Bas Aplic.2008;29:297-301.

14. Kähkönen MP, Hopia AI, Vuorela HJ, Ranha J, Pihlaja K, Kujala TS, et al. Antioxidant activity plants extracts containing phenolics compounds. J Agric Food Chem. 1999;47:3954-62.

15. Noguch N, Niki E. Phenolic antioxidants: A rationale for design and evaluation of novel antioxidant drugs for atherosclerosis. Free Rad Biol Med. 2000;28:1538-46.

16. Halliwell B. Antioxidants and human disease: a general introduction. Nutr Rev. 1997;55:544-52.

17. Meyer BN, Ferrigni NR, Putnam JF, Jacobsen LB, Nichols DE, Mclaughlin JL. Brine shrimp a convenient general bioassay for active plant constituents. Planta Med. 1982;45:31-5.

18. Zani CL, Chaves PPG, Queiroz R, Menes NM, Oliveira AB, Cardoso JE, et al. Brine shrimp lethality assay as a prescreening system for anti-Trypasoma cruzi activity. Phytomed.1995;2:47-54.

19. Schmeda-Hirschmann G. Flavonoids from Calycorectes, Campomanesia, Eugenia and Hexachlamys species. Fitoter.1995;66:373-4.

20. Córdova MM, Wernerb MFP, Silva MD, Ruanic AP, Pizzolatti MG, Santos ARS. Further antinociceptive effects of myricitrin

in chemical models of overt nociception in mice. Neurosci Lett. 2011;495:173-7.

21. Meotti FC, Luiz AP, Pizzolatti MG, Kassuya CA, Calixto JB, Santos AR. Analysis of the antinociceptive effect of the flavonoid myricitrin: evidence for a role of the l-arginine–nitric oxide and protein kinase C pathways. J Pharmacol Exp Ther. 2006;316:789-96.

22. Salvador MJ, Ferreira EO, Mertens-Talcott SU, Castro WV, Butterweck V, Derendorf H, et al. Isolation and HPLC quantitative analysis of antioxidant flavonoids from Alternanthera tenella Colla. Zeitschrift Fur Naturforschung C. 2006;61:19-25.

23. Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, et al. Feasibility of a High-Flux Anticancer Drug Screen Using a Diverse Panel of Cultured Human Tumor Cell Lines. J Natl Cancer Inst.1991;83:757-66.

24. Agrawal PK. Carbon-13 NMR of Flavonoids. Amsterdam: Elsevier; 1989, p 95-235.

25. Belofsky G, Percivill D, Lewis K, Tegos GP, Ekart J. Phenolic metabolites of Dalea versicolor that enhance antibiotic activity against model pathogenic bacteria.J Nat Prod. 2004;67:481-4.

26. Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J Agric Food Chem. 2005;53:1841-56.

27. Go ML, Wu X, Liu XL. Chalcones: an update on cytotoxic and chemoprotective properties. Curr Med Chem. 2005;12:483-99.

28. Simirgiotis MJ, Adachi S, To S, Yang H, Reynertson KA, Basile M J, et al. Cytotoxic chalcones and antioxidants from the fruits of Syzygium samarangense (Wax Jambu). Food Chem. 2008;107:813-9.

29. Andrade Cunha GM, Fontenele JB, Nobre Júnior HV, De Sousa FCM, Silveira ER, Nogueira NAP, et al. Cytotoxic Activity of Chalcones Isolated from Lonchocarpus Sericeus (Pocr.) Kunth. Phytother Res. 2003;17:155-9.

30. Ye C-L, Qian F, Wei D-Z, Lu Y-H, Liu J-W. Induction of apoptosis in K562 human leukemia cells by 2’,4’-dihydroxy-6’-methoxy-3’,5’-dimethylchalcone. Leukemia Res. 2005;29:887-92.

31. Ye CL, Liu JW, Wei DZ, Lu YH, Qian F. In vitro anti-tumor activity of 2’,4’-dihydroxy-6’-methoxy-3’,5’- dimethylchalcone against six established human cancer cell lines. Pharmacol Res. 2004;50:505-10.

32. Zakaria ZA, Rofiee MS, Mohamed AM, Teh LK, Salleh MZ. In Vitro Antiproliferative and Antioxidant Activities and Total Phenolic Contents of the Extracts of Melastoma malabathricumLeaves. J Acupunct Meridian Stud. 2011;4:248-56.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2013 Instituto Adolfo Lutz Journal

Downloads

Download data is not yet available.