Monitoramento químico dos óleos de canola, milho, oliva, soja e girassol após tratamento térmico em temperaturas alcançadas por fogões domésticos
PDF (English)

Palavras-chave

óleos vegetais
ácidos graxos
TG/DTA
GC-FID
NIR

Como Citar

1.
Porto BLS, Mendes T de O, Franco DF, Martini W da S, Bell MJV, Oliveira MAL de. Monitoramento químico dos óleos de canola, milho, oliva, soja e girassol após tratamento térmico em temperaturas alcançadas por fogões domésticos. Rev Inst Adolfo Lutz [Internet]. 25º de outubro de 2016 [citado 10º de janeiro de 2025];75:01-1. Disponível em: https://periodicos.saude.sp.gov.br/RIAL/article/view/33514

Resumo

A fritura por imersão é um processo de cocção utilizado pela inclusão de textura e sabor aos alimentos. Foi analisada a oxidação térmica inicial de cinco óleos vegetais comestíveis utilizados para fritura de imersão. Amostras de óleos foram aquecidas duas vezes por 30 minutos, a 180 ºC e depois a 240 ºC, simulando-se as temperaturas de fogões domésticos. As temperaturas de decomposição dos óleos foram determinadas por TG, sendo > 250 ºC. O perfil de FA foi analisado por GC-FID, detectando-se pequeno decréscimo dos UFA nos óleos de milho e soja. Nos óleos de canola, oliva e girassol, os UFA foram estáveis após o tratamento térmico. A menor decomposição dos FA foi detectado no óleo de canola, seguido de milho, oliva, soja e girassol. Análises por espectroscopia NIR resultaram em grande sobreposição das bandas. Os espectros foram modelados por PCA, classificando-se os óleos em dois grupos: óleo fresco e óleo aquecido, principalmente pelas diferenças na região de 1900 nm, relacionadas ao decréscimo do sinal de carboxilas, e associadas à degradação inicial dos FA nas amostras. Ainda que parcialmente, pode-se entender o que ocorre com os óleos vegetais no início de termo-decomposição, abrangências que são úteis para consumidores, indústria alimentícia e órgão de vigilância sanitária.
https://doi.org/10.53393/rial.2016.v75.33514
PDF (English)

Referências

1. Pinto RC, Locquet N, Eveleigh L, Rutledge DN. Preliminary studies on the mid-infrared analysis of edible oils by direct heating on an ATR diamond crystal. Food Chem. 2010;120(4):1170-7. [DOI: 10.1016/j.foodchem.2009.11.053].

2. Martínez-Yusta A, Guillén MD. Deep-frying food in extra virgin olive oil: A study by 1H nuclear magnetic resonance of the influence of food nature on the evolving composition of the frying medium. Food Chem. 2014;150:429-37. [DOI: 10.1016/j.foodchem.2013.11.015].

3. Cerretani L, Bendini A, Rodriguez-Estrada MT, Vittadini E, Chiavaro E. Microwave heating of different commercial categories of olive oil: Part I. Effect on chemical oxidative stability indices and phenolic compounds. Food Chem. 2009;115(4):1381-8. [DOI: 10.1016/j.foodchem.2009.01.060].

4. Chiavaro E, Barnaba C, Vittadini E, Rodriguez- Estrada MT, Cerretani L, Bendini A. Microwave heating of different commercial categories of olive oil: Part II. Effect on thermal properties. Food Chem. 2009;115(4):1393-400. [DOI: 10.1016/j.foodchem.2009.01.064].

5. Chiavaro E, Rodriguez-Estrada MT, Vittadini E, Pellegrini N. Microwave heating of different vegetable oils: Relation between chemical and thermal parameters. LWT - Food Sci Technol. 2010;43(7):1104-12. [DOI: 10.1016/j.lwt.2010.02.016].

6. Cuvelier ME, Lacoste F, Courtois F. Application of a DSC model for the evaluation of TPC in thermo-oxidized oils. Food Control. 2012;28(2):441-4. [DOI: 10.1016/j.foodcont.2012.05.019].

7. Kowalski B. Thermal-oxidative decomposition of edible oils and fats. DSC studies. Thermochim Acta. 1991;184(1):49-57. [DOI: 10.1016/0040-6031(91)80134-5].

8. Pardauil JJR, Souza LKC, Molfetta FA, Zamian JR, Rocha Filho GN, da Costa CEF. Determination of the oxidative stability by DSC of vegetable oils from the Amazonian area. Bioresour Technol. 2011;102(10):5873-7. [DOI: 10.1016/j.biortech.2011.02.022].

9. Chiavaro E, Rodriguez-Estrada MT, Bendini A, Rinaldi M, Cerretani L. Differential scanning calorimetry thermal properties and oxidative stability indices of microwave heated extra virgin olive oils. J Sci Food Agric. 2011;91(2):198-206. [DOI: 10.1002/jsfa.4165].

10. Chiavaro E, Vittadini E, Rodriguez-Estrada MT, Cerretani L, Bendini A. Monovarietal extra virgin olive oils. Correlation between thermal properties and chemical composition: heating thermograms. J Agric Food Chem. 2008;56(2):496-501. [DOI: 10.1021/jf072680w].

11. Maggio RM, Cerretani L, Barnaba C, Chiavaro E. Application of differential scanning calorimetry-chemometric coupled procedure to the evaluation of thermo-oxidation on extra virgin olive oil. Food Biophys. 2012;7(2):114-23. [DOI: 10.1007/s11483-012-9248-1].

12. Pellegrini N, Visioli F, Buratti S, Brighenti F. Direct analysis of total antioxidant activity of olive oil and studies on the influence of heating. J Agric Food Chem. 2001;49(5):2532-8. [DOI: 10.1021/jf001418j].

13. Gómez-Alonso S, Fregapane G, Salvador MD, Gordon MH. Changes in phenolic composition and antioxidant activity of virgin olive oil during frying. J Agric Food Chem. 2003;51(3):667-72. [DOI: 10.1021/jf025932w].

14. Carrasco-Pancorbo A, Cerretani L, Bendini A, Segura-Carretero A, Lercker G, Fernández-Gutiérrez A. Evaluation of the influence of thermal oxidation on the phenolic composition and on the antioxidant activity of extra-virgin olive oils. J Agric Food Chem. 2007;55(12):4771-80. [DOI: 10.1021/jf070186m].

15. Tena N, Aparicio-Ruiz R, García-González DL. Time course analysis of fractionated thermoxidized virgin olive oil by FTIR Spectroscopy. J Agric Food Chem. 2013;61(13):3212-8. [DOI:10.1021/jf305422d].

16. Zribi A, Jabeur H, Aladedunye F, Rebai A, Matthäus B, Bouaziz M. Monitoring of quality and stability characteristics and fatty acid compositions of refined olive and seed oils during repeated pan- and deep-frying using GC, FT-NIRS, and Chemometrics. J Agric Food Chem. 2014;62(42):10357-67. [DOI: 10.1021/jf503146f ].

17. Andrikopoulos NK, Kalogeropoulos N, Falirea A, Barbagianni MN. Performance of virgin olive oil and vegetable shortening during domestic deep-frying and pan-frying of potatoes. Int J Food Sci Technol. 2002;37(2):177-90. [DOI: 10.1046/j.1365-2621.2002.00555.x]

18. Gonçalves RP, Março PH, Valderrama P. Thermal edible oil evaluation by UV–Vis spectroscopy and chemometrics. Food Chem. 2014;163:83-6. [DOI: 10.1016/j.foodchem.2014.04.109].

19. Carmona MÁ, Lafont F, Jiménez-Sanchidrián C, Ruiz JR. Raman spectroscopy study of edible oils and determination of the oxidative stability at frying temperatures. Eur J Lipid Sci Technol. 2014;116(11):1451-6. [DOI: 10.1002/ejlt.201400127].

20. Guillen MD, Goicoechea E. Oxidation of corn oil at room temperature: Primary and secondary oxidation products and determination of their concentration in the oil liquid matrix from 1H nuclear magnetic resonance data. Food Chem. 2009;116(1):183-92. [DOI: 10.1016/j.foodchem.2009.02.029].

21. Guillén MD, Ruiz A. Study by means of 1H nuclear magnetic resonance of the oxidation process undergone by edible oils of different natures submitted to microwave action. Food Chem. 2006;96(4):665-74. [DOI: 10.1016/j.foodchem.2005.04.013].

22. Kowalski B, Ratusz K, Kowalska D, Bekas W. Determination of the oxidative stability of vegetable oils by Differential Scanning Calorimetry and Rancimat measurements. Eur J Lipid Sci Technol. 2004;106(3):165-9. [DOI: 10.1002/ejlt.200300915].

23. Giuffrida F, Destaillats F, Egart MH, Hug B, Golay P-A, Skibsted LH, et al. Activity and thermal stability of antioxidants by differential scanning calorimetry and electron spin resonance spectroscopy. Food Chem. 2007;101(3):1108-14. [DOI:10.1016/j.foodchem.2006.03.010].

24. Takeoka GR, Full GH, Dao LT. Effect of heating on the characteristics and chemical composition of selected frying oils and fats. J Agric Food Chem. 1997;45(8):3244-9. [DOI:10.1021/jf970111q].

25. López-Beceiro J, Artiaga R, Gracia C, Tarrío-Saavedra J, Naya S, Mier J. Comparison of olive, corn, soybean and sunflower oils by PDSC. J Therm Anal Calorim. 2011;104(1):169-75. [DOI: 10.1007/s10973-010-1165-2].

26. Berasategi I, Barriuso B, Ansorena D, Astiasarán I. Stability of avocado oil during heating: Comparative study to olive oil. Food Chem. 2012;132(1):439-46. [DOI: 10.1016/j.foodchem.2011.11.018].

27. Christie WW. Preparation of ester derivatives of fatty acids for chromatographic analysis. In: Christie WW, editor. Advances in Lipid Methodology - Two. 1ª ed. Dundee: Oily Press; 1993. p. 69-111.

28. Christie WW, Han X. Chapter 7 - Preparation of derivatives of fatty acids. In: Christie WW, Han X, editors. Lipid Analysis. 4ª ed.: Woodhead Publishing; 2012. p. 145-58.

29. AOCS. Determination of cis and trans Fatty Acids in Hydrogenated and Refined Oils and Fats by Capillary GLC. Official Method Ce1f-96: AOCS Press; Reapproved 1997 Revised 2001.

30. Dweck J, Sampaio CMS. Analysis of the thermal decomposition of commercial vegetable oils in air by simultaneous TG/DTA. J Therm Anal Calorim. 2004;75(2):385-91. [DOI: 10.1023/B:JTAN.0000027124.96546.0f ].

31. Keszler Á, Kriska T, Németh A. Mechanism of volatile compound production during storage of sunflower oil. J Agric Food Chem. 2000;48(12):5981-5. [DOI: 10.1021/jf000444e].

32. Jolliffe IT. Principal Component Analysis: Springer; 2002. [DOI: 10.1021/jf000444e].

33. Cruz RMS, Khmelinskii I, Vieira M. Methods in Food Analysis: CRC Press; 2014.Porto BLS, Mendes TO, Franco DF, Martini WS, Bell MJV, Oliveira MAL. Chemical monitoring of canola, corn, olive, soybean and sunflower oils after thermal treatment at conventional temperatures in domestic stoves. Rev Inst Adolfo Lutz. São Paulo, 2016;75:1694.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2016 Brenda Lee Simas Porto, Thiago de Oliveira Mendes, Douglas Faza Franco, William da Silva Martini, Maria José Valenzuela Bell, Marcone Augusto Leal de Oliveira

Downloads

Não há dados estatísticos.