Avaliação dos níveis de cromo total em águas para consumo humano
PDF

Palavras-chave

cromo total
água
espectrometria de massas

Como Citar

1.
Mataveli LRV, Buzzo ML, Carvalho M de FH, Arauz LJ de, Mataveli GAV. Avaliação dos níveis de cromo total em águas para consumo humano. Rev Inst Adolfo Lutz [Internet]. 29º de março de 2018 [citado 10º de janeiro de 2025];77:1-11. Disponível em: https://periodicos.saude.sp.gov.br/RIAL/article/view/34184

Resumo

Níveis elevados de cromo associados às águas naturais não são comuns, mas concentrações elevadas desse elemento, de ocorrência natural, têm sido relatadas nas águas subterrâneas de vários sistemas aquíferos, incluindo o Aquífero Bauru, SP, Brasil. Este fato está associado à ocorrência de rochas máficas/ultramáficas e às condições alcalinas e oxidantes. Neste estudo foi desenvolvido e aplicado um método para monitorar a concentração de cromo total em amostras de água da cidade de São José do Rio Preto. Esta cidade está localizada no estado de São Paulo, na região onde concentrações superiores ao limite estabelecido pela legislação brasileira (0,05 mg/L) foram detectadas em águas subterrâneas de poços de abastecimento. O cromo total foi determinado usando-se Espectrometria de Massas com Plasma Indutivamente Acoplado (ICPMS) em 104 amostras de água coletadas, entre 2013 e 2017, em diferentes pontos de distribuição (zona rural, residencial, distrito industrial, comercial, reservatório de distribuição e estação de tratamento de água), considerando-se 52 locais. Em 99 % das amostras as concentrações de Cr estavam acima do limite de quantificação calculado para o método (0,001 mg/L). E 15% apresentaram concentrações acima do limite de regulação na água potável (Portaria 2914/2011), sendo, portanto, consideradas impróprias para o consumo humano.

https://doi.org/10.53393/rial.2018.v77.34184
PDF

Referências

1. Freitas EC, Rocha O. Acute and chronic toxicity of chromium and cadmium to the tropical cladoceran pseudosida ramosa and the implications for ecotoxicological studies. Environ Toxicol. 2014;29(2):176-86. https://dx.doi.org/10.1002/tox.20784

2. Pereira CD, Techy JG, Ganzarolli EM, Quináia SP. Chromium fractionation and speciation in natural waters. J. Environ. Monit. 2012;14(6):1559-64. https://dx.doi.org/10.1039/C2EM10949B

3. Linos A, Petralias A, Christophi CA, Christoforidou E, Kouroutou P, Stoltidis M et al. Oral ingestion of hexavalent chromium through drinking water and cancer mortality in an industrial area of Greece – an ecological study. Environ Health. 2011;10:50. https://dx.doi.org/10.1186/1476-069X-10-50

4. Food and Nutrition Board of the Institute of Medicine, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Subcommittee on Interpretation and Uses of Dietary Reference Intakes, DRI Dietary Reference Intakes. Application in Dietary Assessment. Washington (DC): National Academy Press;2000. [acesso 2018 Abr 25]. Disponível em: https://www.ncbi.nlm.nih.gov/books/NBK222890/

5. Ministério da Saúde (BR). Portaria nº 2.914, de 12 de dezembro de 2011. Dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. Diário Oficial da União. Brasilia, DF, [acesso 2018 Abr 25]. Disponível em: bvsms.saude.gov.br/bvs/saudelegis/gm/2011/prt2914_12_12_2011.html

6. Official Journal of the European Communities. Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. [acesso 2018 Abr 25]. Disponível em: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31998L0083&from= EN

7. Perlroth NH, Castelo Branco CW. Current knowledge of environmental exposure in children during the sensitive developmental periods. J Pediatr (Rio J). 2017; 93(1):17-27. https://dx.doi.org/10.1016/j.jped.2016.07.002

8. Ferguson A, Penney R, Solo-Gabriele H. A review of the field on children’s exposure to environmental contaminants: A risk assessment approach. Int J Environ Res Public Health. 2017;14(3).pii:E265. https://dx.doi.org/10.3390/ijerph14030265

9. Kowalski KP, Nielsen SS, Jensen PE, Larsen TH, Terkelsen M, Bagge C et al. Feasibility of integration of an electrodialytic process into soil remediation procedure for removal of copper, chromium and arsenic. International Conference Contaminated sites; 2015 may; Bratislava. [acesso 2018 Abr 25]. Disponível em: http://orbit.dtu.dk/files/112268031/Kowalski_ContSites_paper_release_1.pdf

10. Kaprara E, Kazakis N, Simeonidis K, Coles S, Zouboulis AI, Samaras P et al. Occurrence of Cr (VI) in drinking water of Greece and relation to the geological background. J Hazard Mater. (2015);281:2-11. https://dx.doi.org/10.1016/j.jhazmat.2014.06.084

11. Izbicki JA, Wright M, Seymour WA, McCleskey RB, Fram MS, Belitz K et al. Cr (VI) occurrence and geochemistry in water from public-supply wells in California. Appl Geochem. 2015;63:203-17. https://dx.doi.org/10.1016/j.apgeochem.2015.08.007

12. Moraetis D, Nikolaidis NP, Karatzas GP, Dokou Z, Kalogerakis N, Winkel LHE et al. Origin and mobility of hexavalent chromium in North-Eastern Attica, Greece. Appl Geochem. 2012;27(6):1170-8. https://dx.doi.org/10.1016/j.apgeochem.2012.03.005

13. Gotkowitz MB, McLaughlin PI, Grande JD. Sources of naturally occurring chromium in bedrock aquifers underlying Madison, Wisconsin. Wisconsin Geological & Natural history survey; 2012. 17p. [acesso 2018 Abr 25]. Disponível em: http://wgnhs.uwex.edu/pubs/wofr201208/

14. Bertoloto R, Bourotte C, Hirata R, Marcolan L, Sracek O. Geochemistry of natural chromium occurrence in a sandstone aquifer in Bauru Basin, São Paulo State, Brazil. Appl Geochem. 2011;26(8):1353-63. https://dx.doi.org/10.1016/j.apgeochem.2011.05.009

15. Bourotte C, Bertoloto R, Almodovar ML, Hirata R. Natural occurrence of hexavalent chromium in a sedimentary aquifer in Urânia, State of São Paulo, Brazil. An Acad Bras Ciênc. 2009;81(2):227-42. http://dx.doi.org/10.1590/S0001-37652009000200009

16. Hirata R, Zoby JLG, Oliveira FR. Água subterrânea: reserva estratégica ou emergencial. In: Bicudo CEM, Tundisi JG, Scheuenstuhl, MCB, organizadores. Águas do Brasil: análises estratégicas. São Paulo (SP): Instituto de Botânica; 2010. 222 p. [acesso 2018 Abr 25]. Disponível em: https://www.agrolink.com.br/downloads/%C3%A1gua%20subterr%C3%A2nea%20-%20reserva%20estrat%C3%A9gica%20ou%20emergencial.pdf

17. Companhia Ambiental do Estado de São Paulo – CETESB. Governo do Estado de São Paulo/Secretaria do Meio Ambiente. Qualidade das águas subterrâneas no Estado de São Paulo, 2013-2015. São Paulo;2016. [acesso 2018 Abr 25]. Disponível em: http://cetesb.sp.gov.br/aguas-subterraneas/wp-content/uploads/sites/13/2013/11/Cetesb_QualidadeAguasSubterraneas2015_Web_20-07.pdf

18. São Paulo. Secretaria do Meio Ambiente, Instituto Geológico; Secretaria de Saneamento e Recursos Hídricos. Cadernos do Projeto Ambiental Estratégico Aquíferos, Número 4. Projeto São José do Rio Preto. Restrição e Controle de Uso de Água Subterrânea. São Paulo;2011. [acesso 2018 Abr 25]. Disponível em: http://www.igeologico.sp.gov.br/downloads/livros/SJRP.pdf

19. Carvalho AM. Modelagem numérica como ferramenta para a gestão das águas subterrâneas em São José do Rio Preto, SP [dissertação de mestrado]. São Paulo (SP): Universidade de São Paulo;2013. [acesso 2018 Abr 25]. Disponível em: http://www.teses.usp.br/teses/disponiveis/44/44138/tde-25092014-101823/pt-br.php

20. Long SE, Martin TD, Martin ER. Method 200.8 Determination of trace elements in waters and waste by inductively coupled plasma-mass spectrometry. Creed JT, Brockhoff CA, Martin TD. Revision 5.4; 1994. [acesso 2018 Abr 25]. Disponível em: https://yosemite.epa.gov/oa/eab_web_docket.nsf/Attachments%20By%20ntFilingId/482881CDAF52A73985257D55005D9BEB/$FILE/EPA%20Method%20200.8%20(00608866xB76D6).pdf

21. Ellison SLR, Williams A, editors. Eurachem/CITAC guide: Quantifying Uncertainty in Analytical Measurement. 3.ed. Eurachem/CITAC;2012. [acesso 2018 Abr 25]. Disponível em: https://www.eurachem. org/images/stories/Guides/pdf/QUAM2012_P1.pdf

22. Association of Official Agricultural Chemists - AOAC. Appendix F: guidelines for standard method performance requirements. AOAC International;2016. [acesso 2018 Abr 25]. Disponível em: http://www.eoma.aoac.org/app_f.pdf

23. Instituto Nacional de Metrologia, Qualidade e Tecnologia – INMETRO. Escopo da acreditação – ABNT NBR ISO/IEC 17025 – Ensaio. Acreditação Nº CRL 0679. [acesso 2018 Abr 25]. Disponível em: http://www.inmetro.gov.br/laboratorios/rble/docs/CRL0679.pdf

24. Bertolo RA, Marcolan LNO, Bourette CLM. Relações água-rocha e a hidrogeoquímica do cromo na água subterrânea de poços de monitoramento multiníveis de Urânia, SP, Brasil. Geol USP Sér. Cient, São Paulo. 2009;9(2):47-62. http://dx.doi.org/10.5327/Z1519-874x2009000200003

25. Economou-Eliopoulos M, Megremi I, Vasilatos C. Factors controlling the heterogeneous distribution of Cr (VI) in soil, plants and groundwater: Evidence from the Assopos basin, Greece. Chem Erde. 2011;71:39–52. http://dx.doi.org/10.1016/j.chemer.2011.01.001

26. Kelepertzis E. Investigating the sources and potential health risks of environmental contaminants in soils and drinking waters from the rural clusters in Thiva area (Greece). Ecotoxicol Environ Saf. 2014;100:258-65. https://dx.doi.org/10.1016/j.ecoenv.2013.09.030

27. Ball JW, Izbicki JA. Occurrence of hexavalent chromium in ground water in the western Mojave Desert, California. Appl Geochem. 2004;19(7):1123-35. https://dx.doi.org/10.1016/j.apgeochem.2004.01.011

28. Gonzalez AR, Ndung’u K, Flegal AR. Natural occurrence of hexavalent chromium in the Aromas Red Sands Aquifer, California. Environ Sci Technol. 2005;39(15):5505-11. https://dx.doi.org/10.1021/es048835n

29. Devic G, Djordjevic D, Sakan S. Natural and anthropogenic factors affecting the groundwater quality in Serbia. Sci Total Environ. 2014;468-469:933-42. https://dx.doi.org/10.1016/j.scitotenv.2013.09.011

30. Gray DJ. Naturally occurring Cr6+in shallow groundwaters of the Yilgarn Craton, Western Australia. Geochemistry: Exploration, Environment, Analysis. 2003;3(4):359-68. https://dx.doi.org/10.1144/1467-7873/03-012

31. Fantoni D, Brozzo G, Canepa M, Cipolli F, Marini L, Ottonello G, Zuccolini M. Natural hexavalent chromium in groundwaters interacting with ophiolitic rocks. Environ Geol. 2002;42(8):871-82. https://dx.doi.org/10.1007/s00254-002-0605-0

32. Stefánsson A, Gunnarsson I, Kaasalainen H, Arnósson S. Chromium geochemistry and speciation in natural waters, Iceland. Appl Geochem. 2015;62:200-6. https://dx.doi.org/ 10.1016/j.apgeochem.2014.07.007

33. Coimbra CD, Carvalho G, Philippini H, Silva MFM, Neiva E. Determinação da concentração de metais traço em sedimentos do estuário do Rio Maracaípe – PE/Brasil. Braz J Aquat Sci Technol. 2015;19(2):58-75. https://dx.doi.org/10.14210/bjast.v19n2.4863

34. Centro Integrado de Informações Agrometeorológicas – CIIAGRO. Portal do Estado de São Paulo. Monitoramento climatológico: Início da Estação EMA: 08/03/2008 até 20/09/2017. Município: São José do Rio Preto. [acesso 2018 Abr 25]. Disponível em: http://www.udop.com.br/download/estatistica/economia_chuvas/2008a2017_historico_sjose_rio_preto.pdf

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2018 Lidiane Raquel Verola Mataveli, Márcia Liane Buzzo, Maria de Fátima Henriques Carvalho, Luciana Juncioni de Arauz, Guilherme Augusto Verola Mataveli

Downloads

Não há dados estatísticos.