Evaluation of total chromium levels in drinking water
PDF (Português (Brasil))

Keywords

total chromium
water
mass spectrometry

How to Cite

1.
Mataveli LRV, Buzzo ML, Carvalho M de FH, Arauz LJ de, Mataveli GAV. Evaluation of total chromium levels in drinking water. Rev Inst Adolfo Lutz [Internet]. 2018 Mar. 29 [cited 2024 Dec. 4];77:1-11. Available from: https://periodicos.saude.sp.gov.br/RIAL/article/view/34184

Abstract

Elevated chromium levels in the natural waters are not common, but the high concentrations of naturally occurring Cr have been reported in the groundwater of several aquifer systems.This finding is linked with the occurrence of mafic/ultramafic rocks and associated with the alkaline and oxidizing conditions. This study aimed at monitoring the total chromium concentration in drinking water samples from São José do Rio Preto city. Cr concentrations higher than the limit established by the Brazilian Legislation (0.05 mg/L) were detected in the groundwater from the deep supply wells. Total chromium was determined by using an Inductively Coupled Mass Spectrometer (ICP-MS) in 104 samples collected from the public drinking water distribution networks in 52 sites, from 2013 to 2017. Cr concentrations above the method limit of quantification (0.001 mg/L) were found in 99% of the analyzed samples. Approximately 15% of the collected samples presented Cr in concentrations above the established legislation limit for drinking water (Ordinance 2914/2011), that should be considered as improper for consumption.

https://doi.org/10.53393/rial.2018.v77.34184
PDF (Português (Brasil))

References

1. Freitas EC, Rocha O. Acute and chronic toxicity of chromium and cadmium to the tropical cladoceran pseudosida ramosa and the implications for ecotoxicological studies. Environ Toxicol. 2014;29(2):176-86. https://dx.doi.org/10.1002/tox.20784

2. Pereira CD, Techy JG, Ganzarolli EM, Quináia SP. Chromium fractionation and speciation in natural waters. J. Environ. Monit. 2012;14(6):1559-64. https://dx.doi.org/10.1039/C2EM10949B

3. Linos A, Petralias A, Christophi CA, Christoforidou E, Kouroutou P, Stoltidis M et al. Oral ingestion of hexavalent chromium through drinking water and cancer mortality in an industrial area of Greece – an ecological study. Environ Health. 2011;10:50. https://dx.doi.org/10.1186/1476-069X-10-50

4. Food and Nutrition Board of the Institute of Medicine, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Subcommittee on Interpretation and Uses of Dietary Reference Intakes, DRI Dietary Reference Intakes. Application in Dietary Assessment. Washington (DC): National Academy Press;2000. [acesso 2018 Abr 25]. Disponível em: https://www.ncbi.nlm.nih.gov/books/NBK222890/

5. Ministério da Saúde (BR). Portaria nº 2.914, de 12 de dezembro de 2011. Dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. Diário Oficial da União. Brasilia, DF, [acesso 2018 Abr 25]. Disponível em: bvsms.saude.gov.br/bvs/saudelegis/gm/2011/prt2914_12_12_2011.html

6. Official Journal of the European Communities. Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. [acesso 2018 Abr 25]. Disponível em: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31998L0083&from= EN

7. Perlroth NH, Castelo Branco CW. Current knowledge of environmental exposure in children during the sensitive developmental periods. J Pediatr (Rio J). 2017; 93(1):17-27. https://dx.doi.org/10.1016/j.jped.2016.07.002

8. Ferguson A, Penney R, Solo-Gabriele H. A review of the field on children’s exposure to environmental contaminants: A risk assessment approach. Int J Environ Res Public Health. 2017;14(3).pii:E265. https://dx.doi.org/10.3390/ijerph14030265

9. Kowalski KP, Nielsen SS, Jensen PE, Larsen TH, Terkelsen M, Bagge C et al. Feasibility of integration of an electrodialytic process into soil remediation procedure for removal of copper, chromium and arsenic. International Conference Contaminated sites; 2015 may; Bratislava. [acesso 2018 Abr 25]. Disponível em: http://orbit.dtu.dk/files/112268031/Kowalski_ContSites_paper_release_1.pdf

10. Kaprara E, Kazakis N, Simeonidis K, Coles S, Zouboulis AI, Samaras P et al. Occurrence of Cr (VI) in drinking water of Greece and relation to the geological background. J Hazard Mater. (2015);281:2-11. https://dx.doi.org/10.1016/j.jhazmat.2014.06.084

11. Izbicki JA, Wright M, Seymour WA, McCleskey RB, Fram MS, Belitz K et al. Cr (VI) occurrence and geochemistry in water from public-supply wells in California. Appl Geochem. 2015;63:203-17. https://dx.doi.org/10.1016/j.apgeochem.2015.08.007

12. Moraetis D, Nikolaidis NP, Karatzas GP, Dokou Z, Kalogerakis N, Winkel LHE et al. Origin and mobility of hexavalent chromium in North-Eastern Attica, Greece. Appl Geochem. 2012;27(6):1170-8. https://dx.doi.org/10.1016/j.apgeochem.2012.03.005

13. Gotkowitz MB, McLaughlin PI, Grande JD. Sources of naturally occurring chromium in bedrock aquifers underlying Madison, Wisconsin. Wisconsin Geological & Natural history survey; 2012. 17p. [acesso 2018 Abr 25]. Disponível em: http://wgnhs.uwex.edu/pubs/wofr201208/

14. Bertoloto R, Bourotte C, Hirata R, Marcolan L, Sracek O. Geochemistry of natural chromium occurrence in a sandstone aquifer in Bauru Basin, São Paulo State, Brazil. Appl Geochem. 2011;26(8):1353-63. https://dx.doi.org/10.1016/j.apgeochem.2011.05.009

15. Bourotte C, Bertoloto R, Almodovar ML, Hirata R. Natural occurrence of hexavalent chromium in a sedimentary aquifer in Urânia, State of São Paulo, Brazil. An Acad Bras Ciênc. 2009;81(2):227-42. http://dx.doi.org/10.1590/S0001-37652009000200009

16. Hirata R, Zoby JLG, Oliveira FR. Água subterrânea: reserva estratégica ou emergencial. In: Bicudo CEM, Tundisi JG, Scheuenstuhl, MCB, organizadores. Águas do Brasil: análises estratégicas. São Paulo (SP): Instituto de Botânica; 2010. 222 p. [acesso 2018 Abr 25]. Disponível em: https://www.agrolink.com.br/downloads/%C3%A1gua%20subterr%C3%A2nea%20-%20reserva%20estrat%C3%A9gica%20ou%20emergencial.pdf

17. Companhia Ambiental do Estado de São Paulo – CETESB. Governo do Estado de São Paulo/Secretaria do Meio Ambiente. Qualidade das águas subterrâneas no Estado de São Paulo, 2013-2015. São Paulo;2016. [acesso 2018 Abr 25]. Disponível em: http://cetesb.sp.gov.br/aguas-subterraneas/wp-content/uploads/sites/13/2013/11/Cetesb_QualidadeAguasSubterraneas2015_Web_20-07.pdf

18. São Paulo. Secretaria do Meio Ambiente, Instituto Geológico; Secretaria de Saneamento e Recursos Hídricos. Cadernos do Projeto Ambiental Estratégico Aquíferos, Número 4. Projeto São José do Rio Preto. Restrição e Controle de Uso de Água Subterrânea. São Paulo;2011. [acesso 2018 Abr 25]. Disponível em: http://www.igeologico.sp.gov.br/downloads/livros/SJRP.pdf

19. Carvalho AM. Modelagem numérica como ferramenta para a gestão das águas subterrâneas em São José do Rio Preto, SP [dissertação de mestrado]. São Paulo (SP): Universidade de São Paulo;2013. [acesso 2018 Abr 25]. Disponível em: http://www.teses.usp.br/teses/disponiveis/44/44138/tde-25092014-101823/pt-br.php

20. Long SE, Martin TD, Martin ER. Method 200.8 Determination of trace elements in waters and waste by inductively coupled plasma-mass spectrometry. Creed JT, Brockhoff CA, Martin TD. Revision 5.4; 1994. [acesso 2018 Abr 25]. Disponível em: https://yosemite.epa.gov/oa/eab_web_docket.nsf/Attachments%20By%20ntFilingId/482881CDAF52A73985257D55005D9BEB/$FILE/EPA%20Method%20200.8%20(00608866xB76D6).pdf

21. Ellison SLR, Williams A, editors. Eurachem/CITAC guide: Quantifying Uncertainty in Analytical Measurement. 3.ed. Eurachem/CITAC;2012. [acesso 2018 Abr 25]. Disponível em: https://www.eurachem. org/images/stories/Guides/pdf/QUAM2012_P1.pdf

22. Association of Official Agricultural Chemists - AOAC. Appendix F: guidelines for standard method performance requirements. AOAC International;2016. [acesso 2018 Abr 25]. Disponível em: http://www.eoma.aoac.org/app_f.pdf

23. Instituto Nacional de Metrologia, Qualidade e Tecnologia – INMETRO. Escopo da acreditação – ABNT NBR ISO/IEC 17025 – Ensaio. Acreditação Nº CRL 0679. [acesso 2018 Abr 25]. Disponível em: http://www.inmetro.gov.br/laboratorios/rble/docs/CRL0679.pdf

24. Bertolo RA, Marcolan LNO, Bourette CLM. Relações água-rocha e a hidrogeoquímica do cromo na água subterrânea de poços de monitoramento multiníveis de Urânia, SP, Brasil. Geol USP Sér. Cient, São Paulo. 2009;9(2):47-62. http://dx.doi.org/10.5327/Z1519-874x2009000200003

25. Economou-Eliopoulos M, Megremi I, Vasilatos C. Factors controlling the heterogeneous distribution of Cr (VI) in soil, plants and groundwater: Evidence from the Assopos basin, Greece. Chem Erde. 2011;71:39–52. http://dx.doi.org/10.1016/j.chemer.2011.01.001

26. Kelepertzis E. Investigating the sources and potential health risks of environmental contaminants in soils and drinking waters from the rural clusters in Thiva area (Greece). Ecotoxicol Environ Saf. 2014;100:258-65. https://dx.doi.org/10.1016/j.ecoenv.2013.09.030

27. Ball JW, Izbicki JA. Occurrence of hexavalent chromium in ground water in the western Mojave Desert, California. Appl Geochem. 2004;19(7):1123-35. https://dx.doi.org/10.1016/j.apgeochem.2004.01.011

28. Gonzalez AR, Ndung’u K, Flegal AR. Natural occurrence of hexavalent chromium in the Aromas Red Sands Aquifer, California. Environ Sci Technol. 2005;39(15):5505-11. https://dx.doi.org/10.1021/es048835n

29. Devic G, Djordjevic D, Sakan S. Natural and anthropogenic factors affecting the groundwater quality in Serbia. Sci Total Environ. 2014;468-469:933-42. https://dx.doi.org/10.1016/j.scitotenv.2013.09.011

30. Gray DJ. Naturally occurring Cr6+in shallow groundwaters of the Yilgarn Craton, Western Australia. Geochemistry: Exploration, Environment, Analysis. 2003;3(4):359-68. https://dx.doi.org/10.1144/1467-7873/03-012

31. Fantoni D, Brozzo G, Canepa M, Cipolli F, Marini L, Ottonello G, Zuccolini M. Natural hexavalent chromium in groundwaters interacting with ophiolitic rocks. Environ Geol. 2002;42(8):871-82. https://dx.doi.org/10.1007/s00254-002-0605-0

32. Stefánsson A, Gunnarsson I, Kaasalainen H, Arnósson S. Chromium geochemistry and speciation in natural waters, Iceland. Appl Geochem. 2015;62:200-6. https://dx.doi.org/ 10.1016/j.apgeochem.2014.07.007

33. Coimbra CD, Carvalho G, Philippini H, Silva MFM, Neiva E. Determinação da concentração de metais traço em sedimentos do estuário do Rio Maracaípe – PE/Brasil. Braz J Aquat Sci Technol. 2015;19(2):58-75. https://dx.doi.org/10.14210/bjast.v19n2.4863

34. Centro Integrado de Informações Agrometeorológicas – CIIAGRO. Portal do Estado de São Paulo. Monitoramento climatológico: Início da Estação EMA: 08/03/2008 até 20/09/2017. Município: São José do Rio Preto. [acesso 2018 Abr 25]. Disponível em: http://www.udop.com.br/download/estatistica/economia_chuvas/2008a2017_historico_sjose_rio_preto.pdf

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2018 Lidiane Raquel Verola Mataveli, Márcia Liane Buzzo, Maria de Fátima Henriques Carvalho, Luciana Juncioni de Arauz, Guilherme Augusto Verola Mataveli

Downloads

Download data is not yet available.