O INÍCIO DESDE O INÍCIO: A MAQUINARIA DE PRÉ-REPLICAÇÃO EM DIFERENTES ORGANISMOS

Palavras-chave

Maquinaria de pré-replicação
ORC
Cdc6
Cdt1
MCM
Trypanosoma cruzi

Como Citar

1.
GODOY PD de M, CALDERANO SG, ELIAS MC. O INÍCIO DESDE O INÍCIO: A MAQUINARIA DE PRÉ-REPLICAÇÃO EM DIFERENTES ORGANISMOS. Rev Inst Adolfo Lutz [Internet]. 30º de dezembro de 2010 [citado 10º de janeiro de 2025];69:61-7. Disponível em: https://periodicos.saude.sp.gov.br/RIAL/article/view/38543

Resumo

A replicação do DNA requer precisão e especificidade. Para garantir este controle, a célula utiliza dois elementos genéticos: uma sequência de nucleotídeos, na qual a duplicação do DNA inicia-se, e uma molécula, ou um complexo proteico, capaz de reconhecer esta região do DNA como uma origem de replicação. Em leveduras e em metazoários, a origem de replicação é reconhecida por um complexo de pré-replicação composto por um heterohexâmero ORC, formado por seis proteínas Orc1-Orc6. O complexo ORC recruta as moléculas Cdc6 e Cdt1, que juntas recrutam o complexo MCM, composto por seis subunidades, que apresenta atividade de helicase e é fundamental para replicação do DNA. Em Archaea, a origem de replicação é reconhecida por apenas uma proteína homóloga tanto a Orc1 quanto a Cdc6, Orc1/Cdc6, que recruta o complexo MCM. Na maioria dos representantes de Archaea, o complexo MCM apresenta-se como um homohexâmero, formado apenas por uma subunidade de MCM. Em Trypanosoma cruzi, o complexo de pré-replicação também é composto por uma molécula Orc1/Cdc6. Em seu genoma, no entanto, encontram-se as seis subunidades de MCM. Estes dados demonstram que T. cruzi apresenta uma maquinaria de pré-replicação mais complexa que a de Archaea, porém mais simples que a dos demais eucariontes.

Referências

1. Boulikas T. Common structural features of replication origins in all life forms. J Cell Biochem. 1996;60(3):297-316

2. Grabowski B, Kelman Z. Archeal DNA replication: eukaryal proteins in a bacterial context. Annu Rev Microbiol. 2003;57:487-516.

3. Newlon CS. Putting it all together: building a prereplicative complex. Cell. 1997;91(6):717-20.

4. Walker JE, Saraste M, Runswick MJ, Gay NJ. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. Embo J. 1982;1(8):945-51.

5. Guenther B, Onrust R, Sali A, O’Donnell M, Kuriyan J. Crystal structure of the delta’ subunit of the clamp-loader complex of E. coli DNA polymerase III. Cell. 1997;91(3):335-45.

6. Mendez J, Stillman B. Perpetuating the double helix: molecular machines at eukaryotic DNA replication origins. Bioessays. 2003;25(12):1158-67.

7. Speck C, Stillman B. Cdc6 ATPase activity regulates ORC x Cdc6 stability and the selection of specific DNA sequences as origins of DNA replication. J Biol Chem. 2007;282(16):11705-14.

8. Bell SP, Stillman B. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature. 1992;357(6374):128-34.

9. Labib K, Diffley JF. Is the MCM2-7 complex the eukaryotic DNA replication fork helicase? Curr Opin Genet Dev. 2001;11(1):64-70.

10. Bell SP, Dutta A. DNA replication in eukaryotic cells. Annu Rev Biochem. 2002;71:333-74.

11. Stillman B. Origin recognition and the chromosome cycle. FEBS Lett. 2005;579(4):877-84.

12. Bell SP, Stillman B. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature. 1992;357(6374):128-34.

13. Chen Z, Speck C, Wendel P, Tang C, Stillman B, Li H. The architecture of the DNA replication origin recognition complex in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2008;105(30):10326-31.

14. Speck C, Chen Z, Li H, Stillman B. ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA. Nat Struct Mol Biol. 2005;12(11):965-71.

15. Bernander R. Chromosome replication, nucleoid segregation and cell division in archaea. Trends Microbiol. 2000;8(6):278-83.

16. Kelman LM, Kelman Z. Archaea: an archetype for replication initiation studies? Mol Microbiol. 2003;48(3):605-15.

17. Myllykallio H, Lopez P, Lopez-Garcia P, Heilig R, Saurin W, Zivanovic Y, et al. Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. Science. 2000;288(5474):2212-5.

18. De FM, Esposito L, Pucci B, De FM, Rossi M, Pisani FM. A CDC6-like factor from the archaea Sulfolobus solfataricus promotes binding of the mini-chromosome maintenance complex to DNA. J Biol Chem. 2004;279(41):43008-12.

19. De FM, Esposito L, Pucci B, De FM, Manco G, Rossi M, et al. Modular organization of a Cdc6-like protein from the crenarchaeon Sulfolobus solfataricus. Biochem J. 2004;381(Pt 3):645-53.

20. De FM, Esposito L, Rossi M, Pisani FM. Biochemical characterization of two Cdc6/ORC1-like proteins from the crenarchaeon Sulfolobus solfataricus. Extremophiles. 2006;10(1):61-70.

21. De FM, Esposito L, Pucci B, Carpentieri F, De FM, Rossi M, et al. Biochemical characterization of a CDC6-like protein from the crenarchaeon Sulfolobus solfataricus. J Biol Chem. 2003;278(47):46424-31.

22. Pucci B, De FM, Rocco M, Esposito F, De FM, Esposito L, et al. Modular organization of the Sulfolobus solfataricus mini-chromosome maintenance protein. J Biol Chem. 2007;282(17):12574-82.

23. Singleton MR, Morales R, Grainge I, Cook N, Isupov MN, Wigley DB. Conformational changes induced by nucleotide binding in Cdc6/ORC from Aeropyrum pernix. J Mol Biol. 2004;343(3):547-57.

24. El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science. 2005;309(5733):409-15.

25. Godoy PDM, Nogueira-Junior LA, Paes LS, Cornejo A, Martins RM, Silber AM, et al. Trypanosome prereplication machinery contains a single functional orc1/cdc6 protein, which is typical of archaea. Eukaryot Cell. 2009; 8(10): 1592-603.

26. Hartwell LH, Mortimer RK, Culotti J, Culotti M. Genetic Control of the Cell Division Cycle in Yeast: V. Genetic Analysis of cdc Mutants. Genetics. 1973;74(2):267-86.

27. Coleman TR, Carpenter PB, Dunphy WG. The Xenopus Cdc6 protein is essential for the initiation of a single round of DNA replication in cell-free extracts. Cell. 1996;87(1):53-63.

28. Herbig U, Marlar CA, Fanning E. The Cdc6 nucleotide-binding site regulates its activity in DNA replication in human cells. Mol Biol Cell. 1999;10(8):2631-45.

29. Elsasser S, Chi Y, Yang P, Campbell JL. Phosphorylation controls timing of Cdc6p destruction: A biochemical analysis. Mol Biol Cell. 1999;10(10):3263-77.

30. Weinreich M, Liang C, Stillman B. The Cdc6p nucleotide-binding motif is required for loading mcm proteins onto chromatin. Proc Natl Acad Sci U S A. 1999;96(2):441-6.

31. Matsunaga F, Glatigny A, Mucchielli-Giorgi MH, Agier N, Delacroix H, Marisa L, et al. Genomewide and biochemical analyses of DNA-binding activity of Cdc6/Orc1 and Mcm proteins in Pyrococcus sp. Nucleic Acids Res. 2007;35(10):3214-22.

32. Matsunaga F, Forterre P, Ishino Y, Myllykallio H. In vivo interactions of archaeal Cdc6/Orc1 and minichromosome maintenance proteins with the replication origin. Proc Natl Acad Sci U S A. 2001;98(20):11152-7.

33. Bowers JL, Randell JC, Chen S, Bell SP. ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication. Mol Cell. 2004;16(6):967-78.

34. Blow JJ, Dutta A. Preventing re-replication of chromosomal DNA. Nat Rev Mol Cell Biol. 2005;6(6):476-86.

35. Elsasser S, Chi Y, Yang P, Campbell JL. Phosphorylation controls timing of Cdc6p destruction: A biochemical analysis. Mol Biol Cell. 1999;10(10):3263-77.

36. Mendez J, Zou-Yang XH, Kim SY, Hidaka M, Tansey WP, Stillman B. Human origin recognition complex large subunit is degraded by ubiquitin-mediated proteolysis after initiation of DNA replication. Mol Cell. 2002;9(3):481-91.

37. Tanaka S, Diffley JF. Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2-7 during G1 phase. Nat Cell Biol. 2002;4(3):198-207.

38. Cook JG, Park CH, Burke TW, Leone G, DeGregori J, Engel A, et al. Analysis of Cdc6 function in the assembly of mammalian prereplication complexes. Proc Natl Acad Sci U S A. 2002;99(3):1347-52.

39. Yanagi K, Mizuno T, You Z, Hanaoka F. Mouse geminin inhibits not only Cdt1-MCM6 interactions but also a novel intrinsic Cdt1 DNA binding activity. J Biol Chem. 2002;277(43):40871-80.

40. Ferenbach A, Li A, Brito-Martins M, Blow JJ. Functional domains of the Xenopus replication licensing factor Cdt1. Nucleic Acids Res. 2005;33(1):316-24.

41. Tsuyama T, Tada S, Watanabe S, Seki M, Enomoto T. Licensing for DNA replication requires a strict sequential assembly of Cdc6 and Cdt1 onto chromatin in Xenopus egg extracts. Nucleic Acids Res. 2005;33(2):765-75.

42. Bowers JL, Randell JC, Chen S, Bell SP. ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication. Mol Cell. 2004;16(6):967-78.

43. Speck C, Chen Z, Li H, Stillman B. ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA. Nat Struct Mol Biol. 2005;12(11):965-71.

44. Maiorano D, Lutzmann M, Mechali M. MCM proteins and DNA replication. Curr Opin Cell Biol. 2006;18(2):130-6.

45. Liu Y, Richards TA, Aves SJ. Ancient diversification of eukaryotic MCM DNA replication proteins. BMC Evol Biol. 2009;9:60.

46. Barry ER, Bell SD. DNA replication in the archaea. Microbiol Mol Biol Rev. 2006;70(4):876-87.

47. Majernik AI, Jenkinson ER, Chong JP. DNA replication in thermophiles. Biochem Soc Trans. 2004;32(Pt 2):236-9.

48. Jiang PX, Wang J, Feng Y, He ZG. Divergent functions of multiple eukaryote-like Orc1/Cdc6 proteins on modulating the loading of the MCM helicase onto the origins of the hyperthermophilic archaeon Sulfolobus solfataricus P2. Biochem Biophys Res Commun. 2007;361(3):651-8.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2010 Patrícia Diogo de Melo GODOY, Simone Guedes CALDERANO, Maria Carolina ELIAS

Downloads

Não há dados estatísticos.