O INÍCIO DESDE O INÍCIO: A MAQUINARIA DE PRÉ-REPLICAÇÃO EM DIFERENTES ORGANISMOS

Keywords

Maquinaria de pré-replicação
ORC
Cdc6
Cdt1
MCM
Trypanosoma cruzi

How to Cite

1.
GODOY PD de M, CALDERANO SG, ELIAS MC. O INÍCIO DESDE O INÍCIO: A MAQUINARIA DE PRÉ-REPLICAÇÃO EM DIFERENTES ORGANISMOS. Rev Inst Adolfo Lutz [Internet]. 2010 Dec. 30 [cited 2024 May 19];69:61-7. Available from: https://periodicos.saude.sp.gov.br/RIAL/article/view/38543

Abstract

A replicação do DNA requer precisão e especificidade. Para garantir este controle, a célula utiliza dois elementos genéticos: uma sequência de nucleotídeos, na qual a duplicação do DNA inicia-se, e uma molécula, ou um complexo proteico, capaz de reconhecer esta região do DNA como uma origem de replicação. Em leveduras e em metazoários, a origem de replicação é reconhecida por um complexo de pré-replicação composto por um heterohexâmero ORC, formado por seis proteínas Orc1-Orc6. O complexo ORC recruta as moléculas Cdc6 e Cdt1, que juntas recrutam o complexo MCM, composto por seis subunidades, que apresenta atividade de helicase e é fundamental para replicação do DNA. Em Archaea, a origem de replicação é reconhecida por apenas uma proteína homóloga tanto a Orc1 quanto a Cdc6, Orc1/Cdc6, que recruta o complexo MCM. Na maioria dos representantes de Archaea, o complexo MCM apresenta-se como um homohexâmero, formado apenas por uma subunidade de MCM. Em Trypanosoma cruzi, o complexo de pré-replicação também é composto por uma molécula Orc1/Cdc6. Em seu genoma, no entanto, encontram-se as seis subunidades de MCM. Estes dados demonstram que T. cruzi apresenta uma maquinaria de pré-replicação mais complexa que a de Archaea, porém mais simples que a dos demais eucariontes.

References

1. Boulikas T. Common structural features of replication origins in all life forms. J Cell Biochem. 1996;60(3):297-316

2. Grabowski B, Kelman Z. Archeal DNA replication: eukaryal proteins in a bacterial context. Annu Rev Microbiol. 2003;57:487-516.

3. Newlon CS. Putting it all together: building a prereplicative complex. Cell. 1997;91(6):717-20.

4. Walker JE, Saraste M, Runswick MJ, Gay NJ. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. Embo J. 1982;1(8):945-51.

5. Guenther B, Onrust R, Sali A, O’Donnell M, Kuriyan J. Crystal structure of the delta’ subunit of the clamp-loader complex of E. coli DNA polymerase III. Cell. 1997;91(3):335-45.

6. Mendez J, Stillman B. Perpetuating the double helix: molecular machines at eukaryotic DNA replication origins. Bioessays. 2003;25(12):1158-67.

7. Speck C, Stillman B. Cdc6 ATPase activity regulates ORC x Cdc6 stability and the selection of specific DNA sequences as origins of DNA replication. J Biol Chem. 2007;282(16):11705-14.

8. Bell SP, Stillman B. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature. 1992;357(6374):128-34.

9. Labib K, Diffley JF. Is the MCM2-7 complex the eukaryotic DNA replication fork helicase? Curr Opin Genet Dev. 2001;11(1):64-70.

10. Bell SP, Dutta A. DNA replication in eukaryotic cells. Annu Rev Biochem. 2002;71:333-74.

11. Stillman B. Origin recognition and the chromosome cycle. FEBS Lett. 2005;579(4):877-84.

12. Bell SP, Stillman B. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature. 1992;357(6374):128-34.

13. Chen Z, Speck C, Wendel P, Tang C, Stillman B, Li H. The architecture of the DNA replication origin recognition complex in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2008;105(30):10326-31.

14. Speck C, Chen Z, Li H, Stillman B. ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA. Nat Struct Mol Biol. 2005;12(11):965-71.

15. Bernander R. Chromosome replication, nucleoid segregation and cell division in archaea. Trends Microbiol. 2000;8(6):278-83.

16. Kelman LM, Kelman Z. Archaea: an archetype for replication initiation studies? Mol Microbiol. 2003;48(3):605-15.

17. Myllykallio H, Lopez P, Lopez-Garcia P, Heilig R, Saurin W, Zivanovic Y, et al. Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. Science. 2000;288(5474):2212-5.

18. De FM, Esposito L, Pucci B, De FM, Rossi M, Pisani FM. A CDC6-like factor from the archaea Sulfolobus solfataricus promotes binding of the mini-chromosome maintenance complex to DNA. J Biol Chem. 2004;279(41):43008-12.

19. De FM, Esposito L, Pucci B, De FM, Manco G, Rossi M, et al. Modular organization of a Cdc6-like protein from the crenarchaeon Sulfolobus solfataricus. Biochem J. 2004;381(Pt 3):645-53.

20. De FM, Esposito L, Rossi M, Pisani FM. Biochemical characterization of two Cdc6/ORC1-like proteins from the crenarchaeon Sulfolobus solfataricus. Extremophiles. 2006;10(1):61-70.

21. De FM, Esposito L, Pucci B, Carpentieri F, De FM, Rossi M, et al. Biochemical characterization of a CDC6-like protein from the crenarchaeon Sulfolobus solfataricus. J Biol Chem. 2003;278(47):46424-31.

22. Pucci B, De FM, Rocco M, Esposito F, De FM, Esposito L, et al. Modular organization of the Sulfolobus solfataricus mini-chromosome maintenance protein. J Biol Chem. 2007;282(17):12574-82.

23. Singleton MR, Morales R, Grainge I, Cook N, Isupov MN, Wigley DB. Conformational changes induced by nucleotide binding in Cdc6/ORC from Aeropyrum pernix. J Mol Biol. 2004;343(3):547-57.

24. El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science. 2005;309(5733):409-15.

25. Godoy PDM, Nogueira-Junior LA, Paes LS, Cornejo A, Martins RM, Silber AM, et al. Trypanosome prereplication machinery contains a single functional orc1/cdc6 protein, which is typical of archaea. Eukaryot Cell. 2009; 8(10): 1592-603.

26. Hartwell LH, Mortimer RK, Culotti J, Culotti M. Genetic Control of the Cell Division Cycle in Yeast: V. Genetic Analysis of cdc Mutants. Genetics. 1973;74(2):267-86.

27. Coleman TR, Carpenter PB, Dunphy WG. The Xenopus Cdc6 protein is essential for the initiation of a single round of DNA replication in cell-free extracts. Cell. 1996;87(1):53-63.

28. Herbig U, Marlar CA, Fanning E. The Cdc6 nucleotide-binding site regulates its activity in DNA replication in human cells. Mol Biol Cell. 1999;10(8):2631-45.

29. Elsasser S, Chi Y, Yang P, Campbell JL. Phosphorylation controls timing of Cdc6p destruction: A biochemical analysis. Mol Biol Cell. 1999;10(10):3263-77.

30. Weinreich M, Liang C, Stillman B. The Cdc6p nucleotide-binding motif is required for loading mcm proteins onto chromatin. Proc Natl Acad Sci U S A. 1999;96(2):441-6.

31. Matsunaga F, Glatigny A, Mucchielli-Giorgi MH, Agier N, Delacroix H, Marisa L, et al. Genomewide and biochemical analyses of DNA-binding activity of Cdc6/Orc1 and Mcm proteins in Pyrococcus sp. Nucleic Acids Res. 2007;35(10):3214-22.

32. Matsunaga F, Forterre P, Ishino Y, Myllykallio H. In vivo interactions of archaeal Cdc6/Orc1 and minichromosome maintenance proteins with the replication origin. Proc Natl Acad Sci U S A. 2001;98(20):11152-7.

33. Bowers JL, Randell JC, Chen S, Bell SP. ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication. Mol Cell. 2004;16(6):967-78.

34. Blow JJ, Dutta A. Preventing re-replication of chromosomal DNA. Nat Rev Mol Cell Biol. 2005;6(6):476-86.

35. Elsasser S, Chi Y, Yang P, Campbell JL. Phosphorylation controls timing of Cdc6p destruction: A biochemical analysis. Mol Biol Cell. 1999;10(10):3263-77.

36. Mendez J, Zou-Yang XH, Kim SY, Hidaka M, Tansey WP, Stillman B. Human origin recognition complex large subunit is degraded by ubiquitin-mediated proteolysis after initiation of DNA replication. Mol Cell. 2002;9(3):481-91.

37. Tanaka S, Diffley JF. Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2-7 during G1 phase. Nat Cell Biol. 2002;4(3):198-207.

38. Cook JG, Park CH, Burke TW, Leone G, DeGregori J, Engel A, et al. Analysis of Cdc6 function in the assembly of mammalian prereplication complexes. Proc Natl Acad Sci U S A. 2002;99(3):1347-52.

39. Yanagi K, Mizuno T, You Z, Hanaoka F. Mouse geminin inhibits not only Cdt1-MCM6 interactions but also a novel intrinsic Cdt1 DNA binding activity. J Biol Chem. 2002;277(43):40871-80.

40. Ferenbach A, Li A, Brito-Martins M, Blow JJ. Functional domains of the Xenopus replication licensing factor Cdt1. Nucleic Acids Res. 2005;33(1):316-24.

41. Tsuyama T, Tada S, Watanabe S, Seki M, Enomoto T. Licensing for DNA replication requires a strict sequential assembly of Cdc6 and Cdt1 onto chromatin in Xenopus egg extracts. Nucleic Acids Res. 2005;33(2):765-75.

42. Bowers JL, Randell JC, Chen S, Bell SP. ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication. Mol Cell. 2004;16(6):967-78.

43. Speck C, Chen Z, Li H, Stillman B. ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA. Nat Struct Mol Biol. 2005;12(11):965-71.

44. Maiorano D, Lutzmann M, Mechali M. MCM proteins and DNA replication. Curr Opin Cell Biol. 2006;18(2):130-6.

45. Liu Y, Richards TA, Aves SJ. Ancient diversification of eukaryotic MCM DNA replication proteins. BMC Evol Biol. 2009;9:60.

46. Barry ER, Bell SD. DNA replication in the archaea. Microbiol Mol Biol Rev. 2006;70(4):876-87.

47. Majernik AI, Jenkinson ER, Chong JP. DNA replication in thermophiles. Biochem Soc Trans. 2004;32(Pt 2):236-9.

48. Jiang PX, Wang J, Feng Y, He ZG. Divergent functions of multiple eukaryote-like Orc1/Cdc6 proteins on modulating the loading of the MCM helicase onto the origins of the hyperthermophilic archaeon Sulfolobus solfataricus P2. Biochem Biophys Res Commun. 2007;361(3):651-8.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2010 Instituto Adolfo Lutz Journal

Downloads

Download data is not yet available.