Elucidation of an epidemic outbreak in a school institution: detection of Toxoplasma gondii oocysts in filter backwash water
PDF (Português (Brasil))

Keywords

Outbreak
Toxoplasma gondii.
Waterborne
Epidemiologic surveillance

How to Cite

1.
de Pauli Yamada LF, Bichiato PA, Ramos Cabrera R, Penatti J, Gava R, Pereira-Chioccola VL, Moraes Marciano MA. Elucidation of an epidemic outbreak in a school institution: detection of Toxoplasma gondii oocysts in filter backwash water. Bepa [Internet]. 2025 Sep. 29 [cited 2025 Oct. 6];22:e41669. Available from: https://periodicos.saude.sp.gov.br/BEPA182/article/view/41669

Abstract

Toxoplasmosis is a zoonosis that significantly affects the health of humans as well as domestic and wild animals. It is a cosmopolitan zoonosis caused by the protozoan Toxoplasma gondii, a paradigmatic example of the One Health concept, since it is present in various ecosystems such as water, soil, and food. The occurrence of T. gondii is commonly associated with epidemic outbreaks, especially those involving susceptible individuals such as children and the elderly. The objective of this study was to investigate an outbreak of toxoplasmosis that occurred in a school located in the municipality of Cotia, São Paulo, Brazil. Investigations were carried out through microscopic and molecular analyses to identify the likely source of contamination and to support the implementation of effective preventive measures. Various matrices were analyzed, including food, sandy and clayey soil, vegetables, filtered water, and backwash water from the filtration system. Diagnosis was conducted using microscopic and molecular methods. Oocysts and DNA molecules of T. gondii were detected in the backwash water samples, indicating prior contamination of the water supplied within the institution. The results highlighted the importance of investigating backwash water as a diagnostic matrix in outbreaks with potential waterborne transmission.

https://doi.org/10.57148/bepa.2025.v.22.41669
PDF (Português (Brasil))

References

1- de Barros RAM, Torrecilhas AC, Marciano MAM, Mazuz ML, Pereira Chioccola VL, Fux B. Toxoplasmosis in human and animals around the world: diagnosis and perspectives in the One Health approach. Acta Trop. 2022 Jul;231:106432. https://doi.org/10.1016/j.actatropica.2022.106432 Disponível em: https://www.sciencedirect.com/science/article/pii/S0001706X22001309

2- Rey L. Bases da parasitologia médica. In: Bases da parasitologia médica. 1992. p. 349.

3- Moraes CFG, Saenz ECT. Toxoplasmose congênita. Atas Ciênc Saúde. 2022;10(4). Disponível em: https://revistaseletronicas.fmu.br/index.php/ACIS/article/view/2670

4- Lopes-Mori FMR, Mitsuka-Breganó R, Capobiango JD, Inoue IT, Reiche EMV, Morimoto HK, et al. Programas de controle da toxoplasmose congênita. Rev Assoc Med Bras. 2011;57(5):594–99. DOI: https://doi.org/10.1590/S0104-42302011000500021 Disponível em: https://www.sciencedirect.com/science/article/pii/S0104423011703943

5- Dubey JP. Toxoplasmosis of animals and humans. 2ª ed. Boca Raton: CRC Press; 2016. DOI: https://doi.org/10.1201/9781420092370

6- Almeria S, Dubey JP. Foodborne transmission of Toxoplasma gondii infection in the last decade: an overview. Res Vet Sci. 2021;135:371–85. DOI: https://doi.org/10.1016/j.rvsc.2020.10.019 . Disponível em: https://pubmed.ncbi.nlm.nih.gov/33148402/

7- Ministério da Saúde. Protocolos para investigação de Toxoplasma gondii em amostras ambientais e alimentares [Internet]. Brasília (DF):2020 [acesso em 17 maio 2025]. Disponível em: http://bvsms.saude.gov.br/bvs/publicacoes/protocolos_toxoplasma_amostras_ambientais_alimentares.pdf

8- Marciano, MAM. Pesquisa de Giardia spp., Cryptosporidium spp., Toxoplasma gondii e Cyclospora cayetanensis em água para consumo humano [tese de Doutorado]. São Paulo: Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, 2019. DOI: https://doi.org/10.11606/T.99.2019.tde-19122019-123455

Disponível em: http://www.teses.usp.br/teses/disponiveis/99/99131/tde-19122019-123455/

9- Belaz S, Gangneux J P, Dupretz P, Guiguen C, Robert Gangneux F. A 10 year retrospective comparison of two target sequences, REP 529 and B1, for Toxoplasma gondii detection by quantitative PCR. J Clin Microbiol. 2015;53:1294–300. https://doi.org/10.1128/jcm.02900-14 Disponível em: https://journals.asm.org/doi/full/10.1128/jcm.02900-14

10- Camilo LM, Pereira Chioccola VL, Gava R, Meira Strejevitch CDS, Vidal JE, Brandão de Mattos CC, et al. Molecular diagnosis of symptomatic toxoplasmosis: a 9 year retrospective and prospective study in a referral laboratory in São Paulo, Brazil. Braz J Infect Dis. 2017;21(6):638–47. https://doi.org/10.1016/j.bjid.2017.07.003 Disponível em: https://www.sciencedirect.com/science/article/pii/S1413867017304853

11- Shapiro K, Bahia-Oliveira L, Dixon B, Dumètre A, de Wit LA, VanWormer E, Villena I. Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food Waterborne Parasitol. 2019;1;15:e00049. DOI: https://doi.org/10.1016/j.fawpar.2019.e00049

12- Robert Gangneux F, Dardé ML. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev. 2012;25(2):264–96. DOI: https://doi.org/10.1128/cmr.05013-11 Disponível em: https://journals.asm.org/doi/full/10.1128/cmr.05013-11

13- Ferreira FP, Caldart ET, Freire RL, Mitsuka-Breganó R, Freitas FM, Miura AC et al . T he effect of water source and soil supplementation on parasite contamination in organic vegetable gardens. Rev Bras Parasitol Vet. 2018;27:327–37. DOI: https://doi.org/10.1590/S1984-296120180050 Disponível em: https://www.scielo.br/j/rbpv/a/yRdBsBh8PcpzfyDyrWXPB5g/abstract/?lang=pt&format=html

14- Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Brasília:2024 [acesso em 17 maio 2025]. Disponível em: https://bvsms.saude.gov.br/bvs/publicacoes/guia_vigilancia_saude_6edrev_v1.pdf

15- Isaac Renton JL, Bowie WR, King A, Irwin GS, Ong CS, Fung CP, et al. Detection of Toxoplasma gondii oocysts in drinking water. Appl Environ Microbiol. 1998;64(6):2278–80. https://doi.org/10.1128/AEM.64.6.2278-2280.1998 Disponível em: https://journals.asm.org/doi/full/10.1128/aem.64.6.2278-2280.1998

16- Lass A, Pietkiewicz H, Modzelewska E, Dumètre A, Szostakowska B, Myjak P. Detection of Toxoplasma gondii oocysts in environmental soil samples using molecular methods. Eur J Clin Microbiol Infect Dis. 2009;28:599–605. DOI: https://doi.org/10.1007/s10096-008-0681-5 Disponível em: https://link.springer.com/article/10.1007/s10096-008-0681-5

17- Marciano MAM, Silva RA, Barbosa ML, Ferreira ARS, Pereira Chioccola VL. Determination of the viability of Toxoplasma gondii oocysts by PCR real time after treatment with propidium monoazide. Rev Inst Med Trop Sao Paulo. 2020 Oct 30;62:e84. https://doi.org/10.1590/S1678-9946202062084 Disponível em: https://www.scielo.br/j/rimtsp/a/kHkRpTWxR8ZPJM9PBn9fXNp/?lang=en

18- Food and Agriculture Organization of the United Nations (FAO), United Nations Environment Programme (UNEP), World Organisation for Animal Health (WOAH). One Health Joint Plan of Action (2022-2026). Working together for the health of humans, animals, plants and the environment. Rome:2022. DOI: https://doi.org/10.4060/cc2289 Disponível em: https://www.who.int/publications/i/item/9789240059139

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Laís Fernanda de Pauli Yamada, Páscoa Aparecida Bichiato, Ricardo Ramos Cabrera, Jessica Penatti, Ricardo Gava, Vera Lucia Pereira-Chioccola, Maria Aparecida Moraes Marciano

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...