Efeito da remoção de fenilalanina sobre o perfil peptídico de hidrolisados proteicos da farinha de trigo
PDF

Palavras-chave

farinha de trigo
hidrolisados proteicos
remoção de fenilalanina
perfil peptídico

Como Citar

1.
Carreira RL, Silva VDM, Silva MR, Morais HA, Silvestre MPC. Efeito da remoção de fenilalanina sobre o perfil peptídico de hidrolisados proteicos da farinha de trigo. Rev Inst Adolfo Lutz [Internet]. 1º de março de 2010 [citado 6º de maio de 2024];69(3):371-8. Disponível em: https://periodicos.saude.sp.gov.br/RIAL/article/view/32639

Resumo

Para avaliar o efeito da remoção de fenilalanina no perfil peptídico dos hidrolisados proteicos de farinha
de trigo, foram preparados nove hidrolisados empregando-se a associação sucessiva de pancreatina e de
extrato enzimático bruto obtido da casca de abacaxi (EB). Foram testados o efeito da ordem de adição das
enzimas, da temperatura de reação, da relação enzima: substrato (E:S) e do tratamento físico da amostra.
A análise do perfil peptídico dos hidrolisados foi realizada em duas etapas: antes e após a remoção da
fenilalanina. A cromatografia líquida de alta eficiência de exclusão molecular foi utilizada para efetuar
o fracionamento e a quantificação dos peptídeos e aminoácidos livres pela técnica da Área Corrigida da
Fração. O processo de remoção de fenilalanina melhorou o perfil peptídico de três hidrolisados, mas não
afetou no de cinco hidrolisados. O efeito benéfico desse processo está associado ao aumento no teor de
di- e tripeptídeos ou à redução na quantidade de peptídeos grandes. O melhor perfil peptídico foi obtido
após a remoção de fenilalanina, utilizando-se pancreatina E:S de 4:100 a 50°C, durante 210 min, seguida
de EB E:S de 10:100 a 70°C durante 90 min.

https://doi.org/10.53393/rial.2010.v69.32639
PDF

Referências

1. Mira NVM, Marquez UML. Importância do diagnóstico e tratamento da fenilcetonúria. Rev Saúde Públ. 2000; 34(1):86-96.

2. Malloy-Diniz LF, Cardoso-Martins C, Carneiro KC, Cerqueira MMM, Ferreira APA, Aguiar MJB et al. Funções executivas em crianças fenilcetonúricas. Arq Neuropsiquiatr. 2004; 62(2-B):473-9.

3. Hamman K, Clark H, Montini E, Al-Dhalimy M, Grompe, M, Finegold M et al. Low therapeutic threshold for hepatocyte replacement in murine phenylketonuria. Mol Therapy. 2005; 12(2):337-44.

4. Monteiro LTB, Cândido LMB. Fenilcetonúria no Brasil: evolução e casos. Rev Nutr.2006;19(3):381-7.

5. Wasserstein MP, Snyderman SE, Sansaricq C, Buchsbaum MS. Cerebral glucose metabolism in adults with early treated classic phenylketonuria. Mol Genet Metabol. 2006; 87(3):272–7.

6. Outinen MT, Tossavainen O, Harju M, Linko P, inventors. Method for removing phenylalanine from proteinaceous compositions, a product so obtained and use thereof.US Patents 5,547,687.1996 Aug 20.

7. Lopes DCF, Delvivo FM, Silvestre MPC. Dietary supplements for phenylketonuria: removing Phe by activated carbon. Nutr Food Sci. 2006; 36(2):96-104.

8. Soares RDL, Biasutti EAR, Capobiango M, Vieira CR, Silva VDM, Januário JN et al. Preparation of enzymatic skim milk hydrolysates with low phenylalanine content. Acta Farm Bon. 2006; 25(3):325-32.

9. Lopes DCF, Delvivo FM, Januário JN, Aguiar MJB, Starling ALP, Silvestre MPC. Phenylalanine removal from whey hydrolysates. J Food Technol. 2007; 5(2):191-7.

10. Silva VDM, De Marco LM, Afonso WO, Lopes DCF, Januário JN, Aguiar MJB et al. Preparation of low-phenylalanine whey hydrolysates, using papain and pancreatin immobilized on activated carbon and alumina. Am J Food Technol. 2007; 2:327-41.

11. Capobiango M, Lopes DCF, Carreira RL, Afonso WO, Segall SD, Silvestre MPC. Optimization of enzyme assisted processes for extracting and hydrolysing corn proteins aiming phenylalanine removal. Int J Food Eng.2007; 3:1-19.

12. Lopes DCF, Bizzotto CS, Silva VDM, Afonso WO, Lopes Jr CO, Silvestre MPC. Obtention of low-phenylalanine protein hydrolysates from rice: use of two pancreatins. J Food Technol. 2008;6:57-65.

13. Lopes Jr CO. Extração protéica e obtenção de hidrolisados proteicos de feijão com baixo teor de fenilalanina [Dissertação de mestrado]. Belo Horizonte, Minas Gerais: Faculdade de Farmácia da UFMG, 2008. 81pp.

14. Silvestre MPC, Vieira CR, Silva MR, Silva MC, Lopes Jr CO, Silva VDM. Use of an enzymatic process for extracting and hydrolyzing rice proteins aiming at phenylalanine removal. Int J Food Eng. 2009; 5(1):1-11.

15. Ganapathy V, Gupta N, Martindale RG. Protein digestion and absorption. In: Johnson LR (Ed.). Physiology of the Gastrointestinal Tract, Fourth Edition, Academic Press, 2006. Chapter65, pp.1667-92.

16. Boza JJ, Moënnoz D, Vuichoud J, Jarret AR, Gaudard-de-Weck D, Ballèvre O. Protein hydrolysate vs free amino acid-based diets on the nutritional recovery of the starved rat. Eur J Nutr. 2000; 39:237-43.

17. Chicón R, Belloque J, Alonso E, López-Fandiño R. Antibody binding and functional properties of whey protein hydrolysates obtained under high pressure. Food Hydrocoll. 2009; 23:593-9.

18. Li-Jun L, Chuan-He Z, Zheng Z. Analyzing molecular weight distribution of whey protein hydrolysates. Food Bioprod Proc. 2008; 86(1):1-6.

19. Ito S, Yoshioka S, Ogata I, Yamashita E, Nagai S, Okumoto T et al. Capillary high-performance liquid chromatography/electrospray ion trap time-of-flight mass spectrometry using a novel nanoflow gradient generator. J Chromatogr A. 2005; 1090:178-83.

20. Nogueira R, Lämmerhofer M, Lindner W. Alternative high-performance liquid chromatographic peptide separation and purification concept using a new mixed-mode reversed-phase/weak anion-exchange type stationary phase. J Chromatogr A. 2005; 1089:158-69.

21. Lemieux L, Piot JM, Guillochon D, Amiot J. Study of the efficiency of a mobile phase used in size-exclusion HPLC for the separation of peptides from a casein hydrolysate according to their hydrodynamic volume. J Chromatogr. 1991; 32:499-504.

22. Golovchenko N, Kataeva IA, Akimenko VK. Analysis of pH-dependent protein interactions with gel filtration medium. J Chromatogr. 1992; 591(4):121-8.

23. Visser S, Slagen CJ, Robben AJPM. Determination of molecular mass distributions of whey protein hydrolysates by high-performance size-exclusion chromatography. J Chromatogr. 1992; 599:205-9.

24. Silvestre MPC, Hamon M, Yvon M. Analyses of protein hydrolysates. 1. Use of poly (2-hydroxyethyl-aspartamide) - silica column in size-exclusion chromatography for the fractionation of casein hydrolysates. J Agric Food Chem. 1994; 42:2778-82.

25. Silvestre MPC, Hamon M, Yvon M. Analyses of protein hydrolysates. 2. Characterization of casein hydrolysates by a rapid peptide quantification method. J Agric Food Chem. 1994; 42:2783-89.

26. Morato AF, Carreira RL, Junqueira RG, Silvestre MPC. Optimization of casein hydrolysis for obtaining high contents of small peptides: use of subtilisin and trypsin. J Food Comp Anal.2000; 13(5):843-57.

27. Carreira RL, De Marco LM, Dias DR, Morais HA, Ornellas CBD, Silvestre MPC. Analysis of peptide profiles of casein hydrolysates prepared with pepsin, trypsin and subtilisin. Acta Farm Bon. 2004; 23(1):17-25.

28. Lopes DCF, Delvivo FM, Silvestre MPC. Hydrolysates of skim milk powder: peptide profiles for dietetic purposes. Braz Food J. 2005; 107(1):42-53.

29. Morais HA, De Marco LM, Oliveira MC, Silvestre MPC. Casein hydrolysates using papain: peptide profile and encapsulation in liposomes. Acta Alim. 2005; 34(1):59-69.

30. Biasutti EAR, Lopes DCF, Souza MWS, Campos RBD, Segall SD, Silvestre MPC. Obtenção de hidrolisados do soro de leite com alto teor de oligopeptídeos utilizando-se subtilisina. Braz J Food Technol. 2007; 10(4):225-32.

31. Pimentel-Gomes F. Curso de estatística experimental. 14 ed. Piracicaba (SP): Nobel; 2000.

32. Barbosa CMS, Morais HA, Delvivo FM, Mansur HS, Oliveira MC, Silvestre MPC. Papain hydrolysates of casein: molecular weight profile and encapsulation in lipospheres, J Sci Food Agric. 2004; 84(4):1891-900.

33. Mccalley DV. Effect of buffer on peak shape of peptides in reversed-phase high performance liquid chromatography. J Chromatogr A. 2004; 1038:77-84.

34. Schmidt DG, Poll JK. Enzymatic hydrolysis of whey proteins. Hydrolysis of a-lactoalbumin and b-lactoglobulin in buffer solutions by proteolytic enzymes. Neth Milk Dairy J.1991; 45(4):225-40.

35. Wesley IJ, Larroque O, Osborne BG, Azudin N, Allen H, Skerritt JH. Measurement of gliadin and glutenin content of flour by NIR spectroscopy. J Cereal Sci.2001; 34:125-33.

36. Wang J, Zhao M, Jiang Y. Effects of Wheat Gluten Hydrolysate and Its Ultrafiltration Fractions on Dough Properties and Bread Quality. Food Technol Biotechnol. 2007; 45:410-14.

37. Kong X, Zhou H, Qian H. Enzymatic hydrolysis of wheat gluten by proteases and properties of the resulting hydrolysates. Food Chem. 2007; 102: 759-63.

38. Akiyama H, Sakata K, Yoshioka Y, Murata Y, Ishihara Y, Teshima R et al. Profile Analysis and Immunoglobulin e Reactivity of Wheat Protein Hydrolysates. Int Arch Allergy Immunol. 2006; 140: 36-42.

39. Manu BT, Rao UJSP. Influence of size distribution of proteins, thiol and disulfide content in whole wheat flour on rheological and chapati texture of Indian wheat varieties. Food Chem. 2008; 10: 88-95.

40. Kammoun R, Bejar S, Ellouz R. Protein size distribution and inhibitory effect of wheat hydrolysates on Neutrases. Bior. Technol. 2003; 90: 249-54.

41. Frenhani PB, Burini RB. Mecanismos de absorção de aminoácidos e oligpeptídeos. Arq. Gastroenterol. 1999; 36: 227-37.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2010 Raquel Linhares Carreira, Viviane Dias Medeiros Silva, Mauro Ramalho Silva, Harriman Aley Morais, Marialice Pinto Coelho Silvestre

Downloads

Não há dados estatísticos.