Phenylalanine removal effect on the peptide profile of hydrolyzed protein from wheat flour
PDF (Português (Brasil))

Keywords

wheat flour
hydrolysates
phenylalanine removal
peptide profile

How to Cite

1.
Carreira RL, Silva VDM, Silva MR, Morais HA, Silvestre MPC. Phenylalanine removal effect on the peptide profile of hydrolyzed protein from wheat flour. Rev Inst Adolfo Lutz [Internet]. 2010 Mar. 1 [cited 2024 May 19];69(3):371-8. Available from: https://periodicos.saude.sp.gov.br/RIAL/article/view/32639

Abstract

The effect of phenylalanine removal on the peptide profile of the protein hydrolysates from wheat flour was
investigated. Nine hydrolysates were prepared, using a successive association of a pancreatin and a crude
enzymatic extract obtained from pineapple peel (CE), and the effect of the order of enzymes addition, the
reaction temperature, the enzyme: substrate (E:S) ratio, and the physical treatment of sample were examined.
The analysis of peptide profile of hydrolysates was performed in two stages, that is before and after removing
phenylalanine. The size-exclusion high performance liquid chromatography was used for performing the
fractionation, followed by Correct Fraction Area technique for quantifying peptides and free amino acids.
The process of phenylalanine removal improved the peptide profile of three hydrolyzed samples, but it did
not affect the five hydrolysates. The beneficial effect of this process is correlated with the increase of di- and
tripeptides contents, or in reducing the amount of large peptides. The best peptide profile was obtained
after phenylalanine removal by using pancreatin at E:S ratio of 4:100 at 50ºC for 210min, followed by CE
at E:S ratio of 10:100 at 70ºC for 90 min.

https://doi.org/10.53393/rial.2010.v69.32639
PDF (Português (Brasil))

References

1. Mira NVM, Marquez UML. Importância do diagnóstico e tratamento da fenilcetonúria. Rev Saúde Públ. 2000; 34(1):86-96.

2. Malloy-Diniz LF, Cardoso-Martins C, Carneiro KC, Cerqueira MMM, Ferreira APA, Aguiar MJB et al. Funções executivas em crianças fenilcetonúricas. Arq Neuropsiquiatr. 2004; 62(2-B):473-9.

3. Hamman K, Clark H, Montini E, Al-Dhalimy M, Grompe, M, Finegold M et al. Low therapeutic threshold for hepatocyte replacement in murine phenylketonuria. Mol Therapy. 2005; 12(2):337-44.

4. Monteiro LTB, Cândido LMB. Fenilcetonúria no Brasil: evolução e casos. Rev Nutr.2006;19(3):381-7.

5. Wasserstein MP, Snyderman SE, Sansaricq C, Buchsbaum MS. Cerebral glucose metabolism in adults with early treated classic phenylketonuria. Mol Genet Metabol. 2006; 87(3):272–7.

6. Outinen MT, Tossavainen O, Harju M, Linko P, inventors. Method for removing phenylalanine from proteinaceous compositions, a product so obtained and use thereof.US Patents 5,547,687.1996 Aug 20.

7. Lopes DCF, Delvivo FM, Silvestre MPC. Dietary supplements for phenylketonuria: removing Phe by activated carbon. Nutr Food Sci. 2006; 36(2):96-104.

8. Soares RDL, Biasutti EAR, Capobiango M, Vieira CR, Silva VDM, Januário JN et al. Preparation of enzymatic skim milk hydrolysates with low phenylalanine content. Acta Farm Bon. 2006; 25(3):325-32.

9. Lopes DCF, Delvivo FM, Januário JN, Aguiar MJB, Starling ALP, Silvestre MPC. Phenylalanine removal from whey hydrolysates. J Food Technol. 2007; 5(2):191-7.

10. Silva VDM, De Marco LM, Afonso WO, Lopes DCF, Januário JN, Aguiar MJB et al. Preparation of low-phenylalanine whey hydrolysates, using papain and pancreatin immobilized on activated carbon and alumina. Am J Food Technol. 2007; 2:327-41.

11. Capobiango M, Lopes DCF, Carreira RL, Afonso WO, Segall SD, Silvestre MPC. Optimization of enzyme assisted processes for extracting and hydrolysing corn proteins aiming phenylalanine removal. Int J Food Eng.2007; 3:1-19.

12. Lopes DCF, Bizzotto CS, Silva VDM, Afonso WO, Lopes Jr CO, Silvestre MPC. Obtention of low-phenylalanine protein hydrolysates from rice: use of two pancreatins. J Food Technol. 2008;6:57-65.

13. Lopes Jr CO. Extração protéica e obtenção de hidrolisados proteicos de feijão com baixo teor de fenilalanina [Dissertação de mestrado]. Belo Horizonte, Minas Gerais: Faculdade de Farmácia da UFMG, 2008. 81pp.

14. Silvestre MPC, Vieira CR, Silva MR, Silva MC, Lopes Jr CO, Silva VDM. Use of an enzymatic process for extracting and hydrolyzing rice proteins aiming at phenylalanine removal. Int J Food Eng. 2009; 5(1):1-11.

15. Ganapathy V, Gupta N, Martindale RG. Protein digestion and absorption. In: Johnson LR (Ed.). Physiology of the Gastrointestinal Tract, Fourth Edition, Academic Press, 2006. Chapter65, pp.1667-92.

16. Boza JJ, Moënnoz D, Vuichoud J, Jarret AR, Gaudard-de-Weck D, Ballèvre O. Protein hydrolysate vs free amino acid-based diets on the nutritional recovery of the starved rat. Eur J Nutr. 2000; 39:237-43.

17. Chicón R, Belloque J, Alonso E, López-Fandiño R. Antibody binding and functional properties of whey protein hydrolysates obtained under high pressure. Food Hydrocoll. 2009; 23:593-9.

18. Li-Jun L, Chuan-He Z, Zheng Z. Analyzing molecular weight distribution of whey protein hydrolysates. Food Bioprod Proc. 2008; 86(1):1-6.

19. Ito S, Yoshioka S, Ogata I, Yamashita E, Nagai S, Okumoto T et al. Capillary high-performance liquid chromatography/electrospray ion trap time-of-flight mass spectrometry using a novel nanoflow gradient generator. J Chromatogr A. 2005; 1090:178-83.

20. Nogueira R, Lämmerhofer M, Lindner W. Alternative high-performance liquid chromatographic peptide separation and purification concept using a new mixed-mode reversed-phase/weak anion-exchange type stationary phase. J Chromatogr A. 2005; 1089:158-69.

21. Lemieux L, Piot JM, Guillochon D, Amiot J. Study of the efficiency of a mobile phase used in size-exclusion HPLC for the separation of peptides from a casein hydrolysate according to their hydrodynamic volume. J Chromatogr. 1991; 32:499-504.

22. Golovchenko N, Kataeva IA, Akimenko VK. Analysis of pH-dependent protein interactions with gel filtration medium. J Chromatogr. 1992; 591(4):121-8.

23. Visser S, Slagen CJ, Robben AJPM. Determination of molecular mass distributions of whey protein hydrolysates by high-performance size-exclusion chromatography. J Chromatogr. 1992; 599:205-9.

24. Silvestre MPC, Hamon M, Yvon M. Analyses of protein hydrolysates. 1. Use of poly (2-hydroxyethyl-aspartamide) - silica column in size-exclusion chromatography for the fractionation of casein hydrolysates. J Agric Food Chem. 1994; 42:2778-82.

25. Silvestre MPC, Hamon M, Yvon M. Analyses of protein hydrolysates. 2. Characterization of casein hydrolysates by a rapid peptide quantification method. J Agric Food Chem. 1994; 42:2783-89.

26. Morato AF, Carreira RL, Junqueira RG, Silvestre MPC. Optimization of casein hydrolysis for obtaining high contents of small peptides: use of subtilisin and trypsin. J Food Comp Anal.2000; 13(5):843-57.

27. Carreira RL, De Marco LM, Dias DR, Morais HA, Ornellas CBD, Silvestre MPC. Analysis of peptide profiles of casein hydrolysates prepared with pepsin, trypsin and subtilisin. Acta Farm Bon. 2004; 23(1):17-25.

28. Lopes DCF, Delvivo FM, Silvestre MPC. Hydrolysates of skim milk powder: peptide profiles for dietetic purposes. Braz Food J. 2005; 107(1):42-53.

29. Morais HA, De Marco LM, Oliveira MC, Silvestre MPC. Casein hydrolysates using papain: peptide profile and encapsulation in liposomes. Acta Alim. 2005; 34(1):59-69.

30. Biasutti EAR, Lopes DCF, Souza MWS, Campos RBD, Segall SD, Silvestre MPC. Obtenção de hidrolisados do soro de leite com alto teor de oligopeptídeos utilizando-se subtilisina. Braz J Food Technol. 2007; 10(4):225-32.

31. Pimentel-Gomes F. Curso de estatística experimental. 14 ed. Piracicaba (SP): Nobel; 2000.

32. Barbosa CMS, Morais HA, Delvivo FM, Mansur HS, Oliveira MC, Silvestre MPC. Papain hydrolysates of casein: molecular weight profile and encapsulation in lipospheres, J Sci Food Agric. 2004; 84(4):1891-900.

33. Mccalley DV. Effect of buffer on peak shape of peptides in reversed-phase high performance liquid chromatography. J Chromatogr A. 2004; 1038:77-84.

34. Schmidt DG, Poll JK. Enzymatic hydrolysis of whey proteins. Hydrolysis of a-lactoalbumin and b-lactoglobulin in buffer solutions by proteolytic enzymes. Neth Milk Dairy J.1991; 45(4):225-40.

35. Wesley IJ, Larroque O, Osborne BG, Azudin N, Allen H, Skerritt JH. Measurement of gliadin and glutenin content of flour by NIR spectroscopy. J Cereal Sci.2001; 34:125-33.

36. Wang J, Zhao M, Jiang Y. Effects of Wheat Gluten Hydrolysate and Its Ultrafiltration Fractions on Dough Properties and Bread Quality. Food Technol Biotechnol. 2007; 45:410-14.

37. Kong X, Zhou H, Qian H. Enzymatic hydrolysis of wheat gluten by proteases and properties of the resulting hydrolysates. Food Chem. 2007; 102: 759-63.

38. Akiyama H, Sakata K, Yoshioka Y, Murata Y, Ishihara Y, Teshima R et al. Profile Analysis and Immunoglobulin e Reactivity of Wheat Protein Hydrolysates. Int Arch Allergy Immunol. 2006; 140: 36-42.

39. Manu BT, Rao UJSP. Influence of size distribution of proteins, thiol and disulfide content in whole wheat flour on rheological and chapati texture of Indian wheat varieties. Food Chem. 2008; 10: 88-95.

40. Kammoun R, Bejar S, Ellouz R. Protein size distribution and inhibitory effect of wheat hydrolysates on Neutrases. Bior. Technol. 2003; 90: 249-54.

41. Frenhani PB, Burini RB. Mecanismos de absorção de aminoácidos e oligpeptídeos. Arq. Gastroenterol. 1999; 36: 227-37.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2010 Instituto Adolfo Lutz Journal

Downloads

Download data is not yet available.