Sobrevivência e desenvolvimento de Pseudomonas aeruginosa em água mineral experimentalmente contaminada
PDF

Palavras-chave

Pseudomonas aeruginosa
água mineral
sobrevivência
qualidade da água

Como Citar

1.
Paula de Souza A, Estela Gravato Rowlands R, Martins CG, Paula Ramalho de Paula A, Asturiano Ristori C. Sobrevivência e desenvolvimento de Pseudomonas aeruginosa em água mineral experimentalmente contaminada. Rev Inst Adolfo Lutz [Internet]. 29º de março de 2019 [citado 27º de dezembro de 2024];78(1):1-8. Disponível em: https://periodicos.saude.sp.gov.br/RIAL/article/view/35857

Resumo

Pseudomonas aeruginosa, agente patogênico oportunista, é frequentemente encontrado em águas
minerais e pode causar infecções em indivíduos imunocomprometidos. Neste estudo foi avaliada
a sobrevivência e/ou a multiplicação de P. aeruginosa em amostras de água mineral em embalagens
plásticas de 1,5 L e 20 L, experimentalmente contaminadas, armazenadas a 35 ± 1ºC, 4 ± 2°C e em
temperatura ambiente (20-25ºC), durante o período de validade do produto. Nas amostras de água
mineral em garrafa plástica de 1,5 L, armazenadas a 35 ± 1ºC e 4 ± 2ºC, a população de P. aeruginosa
manteve-se viável durante 370 e 100 dias, respectivamente. O maior aumento da população bacteriana
ocorreu nas amostras de água mineral em galão de 20 L, armazenadas entre 20 a 25ºC, que passou
de 3,8 para 6,6 log10 UFC/mL em um período de sete dias. Portanto, os galões de 20 L merecem
atenção especial, pois além de serem retornáveis, normalmente são armazenados à temperatura
ambiente. Os resultados reforçam a necessidade das empresas de águas minerais implantarem e
implementarem as Boas Práticas de Fabricação (BPF) e o sistema Análise de Perigo e Pontos Críticos
de Controle (APPCC) para eliminar ou minimizar os riscos do consumo deste produto.

https://doi.org/10.53393/rial.2019.v78.35857
PDF

Referências

1. Pant ND, Poudyal N, Bhattacharya SK. Bacteriological quality of bottled drinking water versus municipal tap water in Dharan municipality, Nepal. J Health Popul Nutr. 2016;35(1):17. https://doi.org/10.1186/s41043-016-0054-0

2. Associação Brasileira da Indústria de Águas Minerais - ABINAM. [acesso 2017 Mar 28]. Disponível em: http://www.abinam.com.br/lermais_materias.php?cd_materias=71

3. Mohammadi Kouchesfahani M, Alimohammadi M, Nabizadeh Nodehi R, Aslani H, Rezaie S, Asadian S. Pseudomonas aeruginosa and heterotrophic bacteria count in bottled waters in Iran. Iran J Public Health. 2015;44(11):1514-9.Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703231/pdf/IJPH-44-1514.pdf

4. Gonzalez C, Gutierrez C, Grande T. Bacterial flora in bottled uncarbonated mineral drinking water. Can J Microbiol. 1987;33(12):1120-5. https://dx.doi.org/10.1139/m87-196

5. Eiroa MNU, Junqueira VCA, Silveira NFA. Variação da microbiota natural e de Pseudomonas aeruginosa em água mineral não carbonatada embalada em diferentes materiais durante o armazenamento a 30°C ± 1°C. Ciênc Tecnol Aliment.1997;17(2):167-71. http://dx.doi.org/10.1590/S0101-20611997000200019

6. Eiroa MNU, Junqueira VCA, Silveira NFA. Avaliação microbiológica de linhas de captação e engarrafamento de água mineral. Ciênc Tecnol Aliment.1996;16(2):165-9.

7. Abd El-Salam MM, Al-Ghitany EM, Kassem MM. Quality of bottled water brands in Egypt Part II: biological water examination. J Egypt Public Health Assoc. 2008;83(5-6):468-86.

8. Faruche Filho A, Dias MFF, Taromaru PH, Cerqueira CS, Duque JG. Qualidade microbiológica de águas minerais não carbonatadas em embalagens de 1,5 litros, comercializadas em Araraquara-SP. Alim Nutr Araraquara. 2009;19(4):421-5.

9. Coelho MIS, Mendes ES, Cruz MCS, Bezerra SS, Silva RPP. Avaliação da qualidade microbiológica de águas minerais consumidas na região metropolitana de Recife, Estado de Pernambuco. Acta Sci Health Sci. 2010;32(1):1-8. https://doi.org/10.4025/actascihealthsci.v32i1.3837

10. Naze F, Jouen E, Randriamahazo RT, Simac C, Laurent P, Blériot A et al. Pseudomonas aeruginosa outbreak linked to mineral water bottles in a Neonatal intensive care unit: fast typing by use of high-resolution melting analysis of a variable-number tandem-repeat locus. J Clin Microbiol. 2010;48(9):3146–52. https://doi.org/10.1128/JCM.00402-10

11. Casanovas-Massana A, Blanch AR. Diversity of the heterotrophic microbial populations for distinguishing natural mineral waters. Int J Food Microbiol. 2012;153(1-2):38-44. https://doi.org/10.1016/j.ijfoodmicro.2011.10.012

12. Pedrosa AP, Brandão MLL, Medeiros VM, Rosas CO, Bricio SML, Almeida AECC. Pesquisa de fatores de virulência em Pseudomonas aeruginosa isoladas de águas minerais naturais. Rev Ambient Água. 2014;9(2):313-24. http://dx.doi.org/10.4136/ambi-agua.1359

13. Tafere W, Abera F, Beyene Y, Legesse T. Microbiological quality and safety of bottled water brands sold in Ethiopia. Ethiop J Health Dev. 2014;28(3):178-84. Disponível em: https://www.ejhd.org/index.php/ejhd/article/view/24/pdf

14. Georgieva V, Dimitrova Y. Study of the microbiological quality of bulgarian bottled water in terms of its contamination with Pseudomonasaeruginosa. Cent Eur J Public Health. 2016; 24(4):326–30. https://doi.org/10.21101/cejph.a4219

15. Legnani P, Leoni E, Rapuano S, Turin D, Valenti C. Survival and growth of Pseudomonas aeruginosa in natural mineral water: a 5-year study. Int J Food Microbiol. 1999;53(2-3):153-8. https://doi.org/10.1016/S0168-1605(99)00151-8

16. Caskey S, Stirling J, Moore JE, Rendall JC. Occurrence of Pseudomonas aeruginosa in waters: implications for patients with cystic fibrosis (CF). Lett Appl Microbiol. 2018;66(6):537-41. https://doi.org/10.1111/lam.12876

17. Falcone-Dias MF, Vaz-Moreira I, Manaia CM. Bottled mineral water as a potential source of antibiotic resistant bacteria. Water Res. 2012;46(11):3612-22. https://doi.org/10.1016/j.watres.2012.04.007

18. Kim YJ, Jun YH, Kim YR, Park KG, Park YJ, Kang JY et al. Risk factors for mortality in patients with Pseudomonas aeruginosa bacteremia; retrospective study of impact of combination antimicrobial therapy. BMC Infect Dis. 2014;14:161.https://dx.doi.org/10.1186/1471-2334-14-161

19. Mena KD, Gerba CP. Risk assessment of Pseudomonas aeruginosa in water. Rev Environ Contam Toxicol 2009;201:71–115. https://dx.doi.org/10.1007/978-1-44190032-6_3

20. Sharma G, Rao S, Bansal A, Dang S, Gupta S, Gabrani R. Pseudomonas aeruginosa biofilm: potential therapeutic targets. Biologicals, 2014;42(1):1-7. https://doi.org/10.1016/j.biologicals.2013.11.001

21. Khaniki GRJ, Aghaee EM, Alimohammadi M, Dehghani MH. Effects of Environmental Conditions on Growth and Permanence of Pseudomonas aeruginosa in Bottled Water. J Appl Biol Sci. 2014;8(2):91-5. http://www.jabsonline.org/index.php/jabs/article/view/378/381

22. Ministério da Saúde (BR). Agência Nacional de Vigilância Sanitária. Resolução RDC nº. 275, de 22 set. 2005. Regulamento Técnico para Fixação de Identidade e Qualidade de Água Mineral Natural e Água Natural. Diário Oficial da União. Brasília, DF, 24 mai. 2007. Disponível em: http://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2005/rdc0275_22_09_2005.html

23. Hall N.H. 9222 B Standard total coliform membrane filter procedure using endo media. 9222 G Partitioning thermotolerant coliforms from MF total coliform using EC broth. In: Baird RB, Eaton AD, Rice EW et al. Standard methods for the examination of water and wastewater. 23. ed. Washington (DC): APHA, AWWA, WEF; 2017.

24. Noble T R. 9230 C Membrana filter techniques. In: Baird RB, Eaton AD, Rice EW et al. Standard methods for the examination of water and wastewater. 23. ed. Washington (DC): APHA, AWWA, WEF; 2017.

25. International Organization for Standardization – ISO. ISO 14189.Water quality – Enumeration of Clostridium perfringens – Method using membrane filtration. 1. ed., 2013.

26. Oshiro R. K., Fujioka R. S., Oliver J., Shields J. M. 9213 E Membrana filter technique for Pseudomonas aeruginosa. In: Baird RB, Eaton AD, Rice EW et al. Standard methods for the examination of water and wastewater. 23. ed. Washington (DC): APHA, AWWA, WEF; 2017.

27. Dicheter G., LeChevallier M. W. 9215 B Pour plate method. In: Baird RB, Eaton AD, Rice EW et al. Standard methods for the examination of water and wastewater. 23. ed. Washington (DC): APHA, AWWA, WEF; 2017.

28. Pessôa GV, Da Silva EA. Milieu pour l’identification présomptive rapide dês entérobactéries, dês Aeromonas et dês vibrions. Ann Microbiol (Paris) 1974;125A(3):341-7.

29. Khan NH, Ahsan M, Taylor WD, Kogure K. Culturability and survival of marine, freshwater and clinical Pseudomonas aeruginosa. Microbes Environ. 2010;25(4):266-74. https://doi.org/10.1264/jsme2.ME09178

30. Leclerc H, Moreau A. Microbiological safety of natutal mineral water. FEMS Microbiology Reviews 2002; 26:207-222. https://doi.org/10.1111/j.15746976.2002.tb00611.x

31. Lewenza S, Abboud J, Poon K, Kobryn M, Humplik I, Bell JR et al. Pseudomonas aeruginosa displays a dormancy phenotype during long-term survival in water. PLoS One. 2018;13(9):e0198384. https://doi.org/10.1371/journal.pone.0198384

32. Tamagnini LM, González RD. Bacteriological stability and growth kinetics of Pseudomonas aeruginosa in bottled water. J Appl Microbiol. 1997;83(1):91-4. https://doi.org/10.1046/j.1365-2672.1997.d01-400.x

33. Ministério de Minas e Energia (BR). Departamento Nacional de Produção Mineral (DNPM). Portaria nº 387, de 19 de setembro de 2008. Disciplina o uso das embalagens plástico-garrafão retornável, destinadas ao envasamento e comercialização de água mineral e potável de mesa e dá outras providências. Diário Oficial da União. Brasília, DF, 23 set 2008. Disponível em: https://anmlegis.datalegis.inf.br/action/UrlPublicasAction.php?acao=abrirAtoPublico&num_ato=00000387&sgl_tipo=POR&sgl_orgao=DNPM/MME&vlr_ano=2008&seq_ato=000

34. Ministério de Minas e Energia (BR). Departamento Nacional de Produção Mineral. Portaria 358, de 21 de setembro de 2009. Altera a Portaria 387, de 19 de setembro de 2008. Diário Oficial da União. Brasília, DF, 22 set 2009. Disponível em: https://anmlegis.datalegis.inf.br/action/UrlPublicasAction.php?acao=abrirAtoPublico&num_ato=00000358&sgl_tipo=POR&sg l_orgao=DNPM/MME&vlr_ano=2009&seq_ato=000

35. Jones CR, Adams MR, Zhdan PA, Chamberlain AH. The role of surface physicochemical properties in determining the distribution of the autochthonous microflora in mineral water bottles. J Appl Microbiol. 1999;86(6):917-27. https://doi.org/10.1046/j.1365-2672.1999.00768.x
Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2019 Ana Paula de Souza, Ruth Estela Gravato Rowlands, Cecília Geraldes Martins, Ana Paula Ramalho de Paula, Christiane Asturiano Ristori

Downloads

Não há dados estatísticos.