Panorama da qualidade biológica da água destinada ao tratamento dialítico em pacientes sob cuidados críticos em Unidades de Terapia Intensiva
PDF

Palavras-chave

Lesão Renal Aguda
Diálise
Qualidade da Água
Bactérias Heterotróficas
Endotoxinas
UTI

Como Citar

1.
Almodovar AAB, Hilinski EG, Buzzo ML. Panorama da qualidade biológica da água destinada ao tratamento dialítico em pacientes sob cuidados críticos em Unidades de Terapia Intensiva. Rev Inst Adolfo Lutz [Internet]. 11º de dezembro de 2023 [citado 21º de janeiro de 2025];82:1-14,e39695. Disponível em: https://periodicos.saude.sp.gov.br/RIAL/article/view/39695

Resumo

A incidência da lesão renal aguda caracteriza-se como evento frequente em pacientes críticos internados em Unidades de Terapia Intensiva e está associada ao aumento de mortalidade, causando grande impacto à Saúde Pública. As intercorrências clínicas são minimizadas com intervenções dialíticas, acarretando a exposição do paciente a volumes expressivos de água tratada durante a terapia renal em leito. As análises microbiológicas e de determinação de endotoxinas bacterianas em amostras de água tratada e em soluções de dialisato foram executadas em dois hospitais públicos do município de São Paulo, seguindo metodologias analíticas preconizadas em compêndios oficiais. A avaliação demonstrou que a porcentagem de resultados satisfatórios no período de 2010 a 2022 variou entre 35,2 a 100% e de 40 a 100% para as unidades hospitalares I e II para a água tratada, respectivamente; e, 100% para as soluções de dialisato para a unidade hospitalar I. A eficácia de ações delineadas pelas equipes técnicas das unidades hospitalares, na adequação da água destinada à terapia dialítica, aponta para a importância em estimular outras instituições hospitalares na padronização e implantação de melhoria contínua de seus sistemas de tratamento de água para uso em procedimento dialítico, prevenindo riscos adicionais aos pacientes expostos à terapia renal.

https://doi.org/10.53393/rial.2023.v.82.39695
PDF

Referências

1. Menon S, Krallman KA, Arikan AA, Fuhrman DY, Gorga SM, Mottes T et al. Worldwide exploration of renal replacement outcomes collaborative in kidney disease (WE-ROCK). Kidney Int Rep. 2023;8(8):1542-52. https://doi.org/10.1016/j.ekir.2023.05.026

2. Passoni R, Lordani TVA, Peres LAB, Carvalho ARS. Occurrence of acute kidney injury in adult patients hospitalized with COVID-19: A systematic review and meta-analysis. Nefrologia. 2022;42(4):404-14. https://doi.org/10.1016/j.nefro.2021.09.002

3. Meena J, Mathew G, Kumar J, Chanchlani R. Incidence of acute kidney injury in hospitalized children: A meta-analysis. Pediatrics. 2023;151(2):e2022058823. https://doi.org/10.1542/peds.2022-058823

4. Koyner JL, Mackey RH, Rosenthal NA, Carabuena LA, Kampf JP, Echeverri J et al. Health care resource utilization and costs of persistent severe acute kidney injury (PS-AKI) among hospitalized stage 2/3 AKI patients. KIDNEY 360. 2023;360(4):316-25. https://doi.org/10.34067/KID.0005552022

5. Schreider A, Moraes Júnior CS, Fernandes NMS. Three years evaluation of peritoneal dialysis and hemodialysis absorption costing: Perspective of the service provider compared to funds transfers from the public and private healthcare systems. Braz J Nephrol. 2022;44(2):204-14. https://doi.org/10.1590/2175-8239-JBN-2021-0118

6. Pinheiro G, Ruiz PBO, Lima AFC. Custos dos tratamentos destinados a pacientes adultos com Covid-19 em cuidados intensivos: Revisão integrativa. Rev Paul Enferm. 2023;34:a03. https://doi.org/10.33159/25959484.repen.2023v34a03

7. Oliveira IA. Síndrome da lesão renal aguda. Cap 29. In: Moraes Lu, Francescantonio PLC, Pereira MS, Sarkis CM, Taniguchi ALP, organizadores. As bases do diagnóstico sindrômico. Guarujá, SP: Editora Científica Digital Ltda; 2023. 222-7. Disponível em: https://downloads.editoracientifica.com.br/articles/230312429.pdf

8. Zarbock A, Nadim MK, Pickkers P, Gomez H, Bell S, Joannidis M et al. Sepsis-associated acute kidney injury: consensus report of the 28th acute disease quality initiative workgroup. Nature Reviews Nephrology. 2023;19:401-17. https://doi.org/10.1038/s41581-023006833

9. Moreira-Quijije JX, Tigua-Ponce JA, Alcocer-Diaz S. Prevalencia mundial y factores de riesgo de la insuficiencia renal aguda en poblaciones pediátricas. MQRInvestigar. 2023;7(3):323-43. https://doi.org/10.56048/MQR20225.7.3.2023.323-343

10. De Clercq L, Ailliet T, Schaubroeck H, Hoste EAJ. Acute and chronic cardiovascular consequences of acute kidney injury: A systematic review and meta-analysis. Cardiorenal Med. 2023;13(1):26-33. https://doi.org/10.1159/000527198

11. Meena J, Yadav J, Kumar J, Dawman L, Tiewosh K, Mittal A et al. Incidence, predictors, and short-term outcomes of acute kidney injury in children with diabetic ketoacidosis: A systematic review. Pediatric Nephrology. 2023;38:2023-31. https://doi.org/10.1007/s00467-023-05878-1

12. Turgut F, Awad AS, Abdel-Rahman EM. Acute kidney injury: Medical causes and pathogenesis. J Clin Med. 2023;12(1):375. https://doi.org/10.3390/jcm12010375

13. Ethgen O, Murugan R, Echeverri J, Blackowicz M, Harenski K, Ostermann M. Economic analysis of renal replacement therapy modality in acute kidney injury patients with fluid overload. Critical Care Explorations. https://doi.org/10.1097/CCE.0000000000000921

14. Hu X, Yang M, Li X, Chen Y, Ouyang S, Li L. Knowledge, attitude, and practice of nephrologists on the decision for renal replacement therapy. BMC Public Health. 2023;23:654. https://doi.org/10.1186/s12889-023-15530-0

15. Centers for Disease Control Prevention – CDC. Water use in dialysis. [acesso 2023 Jul 21]. Disponível em: https://www.cdc.gov/dialysis/guidelines/water-use.html

16. Saito AK, Wu S. High-grade Staphylococcus lugdunensis bacteremia in a patient on home hemodialysis. Fed Pract. 2023;40(4):1237. https://doi.org/10.12788/fp.0361

17. Tai T, Yamamoto T, Yamaguchi K, Watanabe M, Tanaka H, Muraki Y et al. Evaluation of the meropenem dosage and administration schedule in patients with bacteremia initial therapy. Journal of Infection and Chemotherapy. 2023;29(8):749-53. https://doi.org/10.1016/j.jiac.2023.04.004

18. Hilinski EG, Almodovar AAB, Silva FPL, Pinto TJA, Bugno A. Is dialysis water a safe component for hemodialysis treatment in São Paulo State, Brazil? Braz J Pharm Sci. 2020;56:e17835. https://dx.doi.org/10.1590/s2175-97902019000417835

19. Jesus PR, Ferreira JAB, Carmo JS, Albertino SRG, Vicentini Neto SA, Santos LMG et al. Monitoring the quality of the water used in mobile dialysis services in intensive care units in the city of Rio de Janeiro. Braz J Nephrol. 2022;44(1):32-41. https://doi.org/10.1590/2175-8239-JBN-2020-0217

20. Almodovar AAB, Buzzo ML, Silva FPL, Hilinski EG, Bugno A. Effectiveness of the monitoring program for ensuring the quality of water treated for dialysis in the state of São Paulo. Braz J Nephrol. 2018;40(4):344-50. https://doi.org/10.1590/2175-8239-JBN-2018-0026

21. Ministério da Saúde (BR). Agência Nacional de Vigilância Sanitária. Resolução RDC nº 154, de 15 de junho de 2004. Estabelece o regulamento técnico para o funcionamento dos serviços de diálise. Diário Oficial da União. Brasília, DF, 17 jun 2004. Seção 1(115):65-9.

22. Ministério da Saúde (BR). Agência Nacional de Vigilância Sanitária. Resolução RDC nº 11, de 13 de março de 2014. Dispõe sobre os requisitos de boas práticas de funcionamento para os serviços de diálise e dá outras providências. Diário Oficial da União. Brasília, DF, 14 mar 2014. Seção 1(50):40-2.

23. Instituto Adolfo Lutz. Manual para Orientação – Análise de Água no Instituto Adolfo Lutz. Segunda Revisão, 2012. Disponível em: http://www.ial.sp.gov.br/resources/editorinplace/ial/2016_4_25/manual_de_colheita_de_agua.pdf?attach=true

24. American Public Health Association (US) – APHA. Standard methods for the examination of water and wastewater. 23ª ed. Washington, DC. 2017. ISBN: 978-0-87553-287-5.

25. BRASIL. Agência Nacional de Vigilância Sanitária – ANVISA. Farmacopeia Brasileira. 2019. 6ª ed. v.1. Disponível em: https://www.gov.br/anvisa/pt-br/assuntos/farmacopeia/farmacopeia-brasileira/VOLUME1FB6at2Erratappdfcomcapa.pdf

26. Cesar Neto, JC. A crise hídrica no estado de São Paulo. Geousp – Espaço e Tempo (Online). 2016;19(3):479-84. http://dx.doi.org/10.11606/issn.2179-0892.geousp.2015.101113

27. Marengo JA, Nobre CA, Seluchi ME, Cuartas A, Alves LM, Mendiondo EM et al. A seca e a crise hídrica de 2014-2015 em São Paulo. Revista USP. 2015;106:31-44. https://doi.org/10.11606/issn.2316-9036.v0i106p31-44

28. Soriano E, Londe LR, Di Gregorio LT, Coutinho MP, Santos LBL. Water crisis in São Paulo evaluated under the disaster’s point of view. Ambient Soc. 2016;19:21-42. https://doi.org/10.1590/1809-4422asoc150120r1v1912016

29. Totaro M, Casini B, Valentini P, Miccoli M, Giorgi S, Porretta A et al. Evaluation and control of microbial and chemical contamination in dialysis water plants of Italian nephrology wards. Journal of Hospital Infection. 2017;97:169-74. http://dx.doi.org/10.1016/j.jhin.2017.05.011

30. Parreira AG, Sousa FV, Rocha AP, Souza TM. Monitoramento microbiológico em sistema inovador e sustentável de tratamento de água destinada à hemodiálise. RAHIS. 2017;48-65. https://doi.org/10.21450/rahis.v13i3.3609

31. Gaibor NGT, Sacaluga LG, Ojeda FC, Cotén JRM, Lazo MS. Thermal disinfection in hemodialysis using the A0 concept as dispenser. Nefrologia. 2019;39(5):482-8. https://doi.org/10.1016/j.nefroe.2019.10.006

32. Iorio B, Micco L, Bruzzese D, Nardone L, Russo L, Formisano P et al. Ultrapure dialysis water obtained with additional ultrafilter may reduce inflammation in patients on hemodialysis. J Nephrol. 2017;30:795-801. https://doi.org/10.1007/s40620-017-0422-x

33. Humadat YR, Al-Naseri SK, Abdul-Majeed MA, Jaafar MS, Al-Naemi AN, Najim LA. Membrane filtration enhanced by ultrasound for reducing endotoxin in dialysis water. Desalination and Water Treatment. 2022;272:31-6. https://doi.org/10.5004/dwt.2022.28842

34. Morghad T, Hassaine H, Boutarfi Z, Gaouar S, Bellifa S, Meziani Z. Bacteriological water quality and biofilm formation in the treatment system of the hemodialysis unit in Tlemcen, Algeria. Seminars in Dialysis. 2020;33:394-401. https://doi.org/10.1111/sdi.12898

35. Tawab MEAE, Arafa RAM, Helmy A, Daigham GES. Management of water quality in some dialysis centers between 1 April 2020 and 31 March 2021 in Cairo hospitals, Egypt. The Arab Journal of Scientific Research. 2023;7(7):85-102. https://doi.org/10.21608/ajsr.2023.296409

36. Câmara SAV, Pivetta ANS, Uehara GHM. Pesquisa de endotoxinas em água de hemodiálise. Vigil sanit debate. 2018;6(4):42-6. https://doi.org/10.22239/2317-269x.01158

37. Bolasco P. The production of on-line dialysis water for extracorporeal dialysis: Proposals for na increased safety upgrade: A viewpoint. Journal of Nephrology. 2020;33:405-15. https://doi.org/10.1007/s40620-019-00667-2

38. Shahryari A, Nikaeen M, Hatamzadeh M, Dastjerdi MV, Hassanzadeh A. Evaluation of bacteriological and chemical quality of dialysis water and fluid in Isfahan, Central Iran. Iran J Public Health. 2016;45(5):650-6. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935709/pdf/IJPH-45-650.pdf

39. Lima BS. Avaliação do desempenho essencial das máquinas de hemodiálise de um EAS de grande porte [trabalho de conclusão de curso]. Uberlândia (MG): Universidade Federal de Uberlândia; 2020. Disponível em: https://repositorio.ufu.br/handle/123456789/29941

40. Gomes AJS. O impacto da gestão da manutenção nos equipamentos de hemodiálise na segurança e qualidade do atendimento do paciente [trabalho de conclusão de curso de pós-graduação do MBA]. Salvador (BA): Serviço Nacional de Aprendizagem Industrial. 2018. Disponível em: http://repositoriosenaiba.fieb.org.br/bitstream/fieb/1403/1/AILTON%20JOS%c3%89%20DE%0SOUZA%20GOMES.pdf

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 1969 Márcia Buzzo, Adriana Almodovar , Ellen Hilinski

Downloads

Não há dados estatísticos.