Abstract
Bacterial biofilms are defined as microbial communities surrounded by an extracellular matrix of polymers
and adhered to surfaces. In food industry, the microorganisms can adhere to organic and inorganic waste
occurring on the equipment and utensils surfaces, if the cleaning and sanitization procedures are done
incorrectly. The presence of sessile cells in the biofilm reduces the efficiency and durability of equipments
through the phenomenon called microbiologically induced corrosion. Additionally, they show much
greater resistance to the sanitization process; the cells can be loosen and contaminate foods that pass
through the place, causing economic losses and risk of occurrence of foodborne diseases. Understanding
the concept, the structure and composition inherent aspects, and also the producing process of microbial
biofilms, are fundamental for establishing effective control strategies and being assured on the risks that
they represent to the food industry. This article reviews the crucial aspects concerned with microbial
biofilms in the food industry i) definition, structure and composition; ii) steps involved in the formation;
iii) mechanisms of resistance to antimicrobials; iv) risks; v) involved microorganisms; and vi) importance
of hygienization as a control strategy.
References
1. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999; 284 (5418): 1318-22.
2. Joseph B, Otta SK, Karunasagar I, Karunasagar I. Biofilm formation by Salmonella spp. on food contact surfaces and their sensitivity to sanitizers. Int J Food Microbiol. 2001; 64 (3): 367-72.
3. Chavant P, Gaillard-Martinie B, Talon R, Hébraud M, Bernardi T. A new device for rapid evaluation of biofilm formation potential by bacteria. J Microbiol Methods. 2007; 68 (3): 605-12.
4. Peng JS, Tsai WC, Chou CC. Inactivation and removal of Bacillus cereus by sanitizer and detergent. Int J Food Microbiol. 2002; 77 (1/2): 11-8.
5. Nikolaev YA, Plakunov VK. Biofilm -“city of microbes” or an analogue of multicellular organisms? Mikrobiologiia. 2007; 76 (2): 149-63.
6. Watnick P, Kolter R. Minireview: biofilm, city of microbes. J Bacteriol. 2000; 182 (10): 2675-9.
7. Stoodley P, Sauer K, Davies DG, Costerton JW.Biofilms as complex differentiated communities.Annu Rev Microbiol. 2002; 56: 187-209.
8. Sutherland IW. The biofilm matrix - an immobilized but dynamic microbial environment. Trends Microbiol. 2001; 9 (5): 222-7.
9. Oulahal N, Brice W, Martial A, Degraeve P. Quantitative analysis of survival of Staphylococcus aureus or Listeria innocuaon two types of surfaces: polypropilene and stainless steel in contact with three different dairy products. Food Control. 2008; 19 (2): 178-85.
10. Trachoo N. Biofilms and the food industry. Songklanakarin J Sci and Technol. 2003; 25 (6): 807-15.
11. Mittelman MW. Structure and functional characteristics of bacterial biofilms in fluid processing operations. J Dairy Sci. 1998; 81(10): 2760-4.
12. Christensen BE, Characklis WG. Physical and chemical properties of biofilms. In: Characklis WG, Marshall KC, editores. Biofilms. New York: John Wiley and Sons, Inc.; 1990. p. 93-130.
13. Hood SK, Zottola EA. Biofilms in food processing. Food Control. 1995; 6 (1): 9-18.
14. Smoot LM, Pierson MD. Effect of environmental stress on the ability of Listeria monocytogenes Scott A to attach to food contact surfaces. J Food Prot. 1998; 61 (10): 1293-8.
15. Sinde E, Carballo J. Attachment of Salmonella spp. and Listeria monocytogenes to stainless steel, rubber and polytetrafluorethylene: the influence of free energy and the effect of commercial sanitizers. Food Microbiol. 2000; 17 (4): 439-47.
16. Oliveira MMM de, Brugnera DF, Alves E, Piccoli RH. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential. Braz J Microbiol. 2010; 41 (1): 97-106.
17. Malone JA, Caldwell DE. Evaluation of surface colonization kinetics in continuous culture. Microb Ecol. 1983; 9 (4): 299-305.
18. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersbøll BK et al. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology. 2000; 146 (10): 2395-407.
19. Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials. 2007; 28 (29): 4192-9.
20. Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol. 2002; 184 (4): 1140–54.
21. Prosser BL, Taylor D, Dix BA, Cleeland R. Method of evaluating effects of antibiotics on bacterial biofilm. Antimicrob Agents Chemother. 1987; 31 (10): 1502-6.
22. Verran J. Biofouling in food processing: biofilm or biotransfer potential? Food Bioprod Process. 2002; 80 (4): 292-8.
23. Salustiano VC, Andrade NJ, Soares NFF, Lima JC, Bernardes PC, Luiz LMP, Fernandes PE. Contamination of milk with Bacillus cereus by post-pasteurization surface exposure as evaluated by automated ribotyping. Food Control. 2009; 20 (4): 439-42.
24. Ravishankar S, Zhu L, Jaroni D. Assessing the cross contamination and transfer rates of Salmonella enterica from chicken to lettuce under different food-handling scenarios. Food Microbiol. 2010; 27 (6): 791-4.
25. Waters CM, Bassler BL. Quorum Sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol. 2005; 21: 319-46.
26. Hammer BK, Bassler BL.Quorum sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol. 2003; 50 (1): 101-4.
27. Labbate M, Queck SY, Koh KS, Rice SA, Givskov M, Kjelleberg S. Quorum Sensing-Controlled Biofilm Development in Serratia liquefaciens MG1. J Bacteriol. 2004; 186 (3): 692-8.
28. Morck DW, Olson ME, Ceri H. Microbial Biofilms: preservation, control and removal. In: Block, SS, editor. Disinfection, Sterilization and Preservation. Lippincott: Williams & Wilkins; 2001. p. 675-681.
29. Gilbert P, Allison DG, McBain AJ. Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? J Appl Microbiol. 2002; 92 Suppl: 98S-110S.
30. Vidal DR, Ragot C, Thibault F. Bacterial biofilms and resistance to disinfectants. Ann Pharm Fr. 1997; 55 (2): 49–54.
31. Mansfeld F. The interaction of bacteria and metal surfaces. Electrochim Acta. 2007; 52 (27): 7670-80.
32. Leriche V, Carpentier B. Viable but nonculturable Salmonella typhimurium in single- and binary-species biofilms in response to chlorine treatment. J Food Prot. 1995; 58 (11): 1186-91.
33. Andrade NJ, Bridgeman TA, Zottola EA. Bacteriocidal activity of sanitizers against Enterococcus faecium attached to stainless steel as determined by plate count and impedance methods. J Food Prot. 1998; 61: 833-8.
34. Smith JL, Fratâmico PM. Factors involved in the emergence and persistence of foodborne diseases. J Food Prot. 1995; 58 (6): 696-708.
35. Surman SB, Morton LHG, Keevil CW. Biofilms: an overview. PHLS Microbiol Digest. 1996; 13 (1): 33-8.
36. Marouani-Gadri N, Augier G, Carpentier B. Characterization of bacterial strains isolated from a beef-processing plant following cleaning and disinfection - Influence of isolated strains on biofilm formation by Sakaï and EDL 933 E. coli O157:H7. Int J Food Microbiol. 2009; 133 (1/2): 62-7.
37. Timke M, Wang-Lieu NQ, Altendorf K, Lipski A. Community structure and diversity of biofilms from a beer bottling plant as revealed using 16S rRNA gene clone libraries. Appl Environ Microbiol. 2005; 71 (10): 6446-52.
38. Ronner AB, Wong ACL. Biofilm development and sanitizer inactivation of Listeria monocytogenes and Salmonella typhimurium on stainless-steel and buna-N rubber. J Food Prot. 1993; 56: 750– 8.
39. Wirtanen G, Husmark U, Mattila-Sandholm T. Microbial evaluation of the biotransfer potencial from surfaces with Bacillus biofilms after rinsing and cleaning procedures in closed food-processing systems. J Food Prot. 1996; 59: 727-33.
40. Andrade NJ, Pinto CL de O, Rosado MS. Controle da higienização na indústria de alimentos. In: Andrade NJ, editores. Higiene na Indústria de Alimentos: avaliação e controle da adesão e formação de biofilmes bacterianos. São Paulo: Varela; 2008. p. 181-226.
41. Brasil. Portaria nº 15 de 23 de agosto de 1988 da Agência Nacional de Vigilância Sanitária. Determina que o registro de produtos saneantes domissanitários com finalidade antimicrobiana seja procedido de acordo com as normas regulamentares. Diário oficial [da] República Federativa do Brasil, Brasília, DF, 05 set. 1988.
42. American Public Health Association (APHA). Compendium of Methods for the Microbiological Examination of Foods. Hanover: EPS Group Inc.; 1992.
43. Andrade NJ, Silva, RMM da, Brabes, KCS. Avaliação das condições microbiológicas em unidades de alimentação e nutrição. Ciênc Agrotec. 2003; 27 (3): 590-6.
44. Rossoni EMM, Gaylard CC. Comparison of sodium hypochlorite and peracetic acid as sanitizing agents for stainless steel food processing surfaces using epifluorescence microscopy. Int J Food Microbiol. 2000;61 (1): 81–5.
45. Cabeça TK, Pizzolitto AC, Pizzolitto EL. Assessment of action of disinfectants against Listeria monocytogenes biofilms. Alimentos e Nutrição. 2006; 17 (2): 121-5.
46. Xavier JB, Picioreanu C, Rani SA, van Loosdrecht MC, Stewart PS. Biofilm-control strategies based on enzymic disruption of the extracellular polymeric substance matrix – a modelling study. Microbiology. 2005; 151(12): 3817-32.
47. Meylheuc T, Renault M, Bellon-Fontaine MN. Adsorption of a biosurfactant on surfaces to enhance the disinfection of surfaces contaminated with Listeria monocytogenes. Int J Food Microbiol. 2006; 109 (1/2): 71-8.
48. Byun MW, Kim JH, Kim DH, Kim HJ, Jo C. Effects of irradiation and sodium hypochlorite on the micro-organisms attached to a commercial food container. Food Microbiol. 2007; 24 (5): 544-8.
49. Oliveira MMM de, Brugnera DF, Cardoso M das G, Alves E, Piccoli RH. Disinfectant action of Cymbopogon sp. essential oils in different phases of biofilm formation by Listeria monocytogenes on stainless steel surface. Food Control. 2010; 21 (4): 549-53.
50. Cabo ML, Herrera JJ, Crespo MD, Pastoriza L. Comparison among the effectiveness of ozone, nisin and benzalkonium chloride for the elimination of planktonic cells and biofilms of Staphylococcus aureus CECT4459 on polypropylene. Food Control. 2009; 20 (5): 521–5.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2010 Instituto Adolfo Lutz Journal