Abstract
Over the last few years, a number of strategies to minimize the microbial load in raw products have been explored. Problems with the acceptability and deterioration of organoleptic properties have been described after physical treatments such as steam, dry heat and UV light. Moreover, consumers are looking for more natural foods, i.e. free from chemical preservatives. An approach that has been the object of growing interest is the use of bacteriophages, which are viruses that infect and kill bacteria. Bacteriophages are components of the natural microflora in the food production continuum from the farm to the retail outlet; they are stable in
these environments and are readily recovered from soil, sewage, water, farm and processing plant effluents, feces, and retail foods. Studies on pathogens control in foods by using bacteriophage are romising, however they have to be improved. The success of this methodology will depend on the consumer’s acceptance. In this way, it is recommended to carefully consider the origin of the phage before introducing it into foods.
References
1. García P, Martínez B, Obeso JM, Rodríguez A. Bacteriophages and their application in food safety. Lett App Microbiol. 2008; 47:479-85.
2. Hudson JA, Bi l lington C, Carey-Smith G, Greening G. Bacteriophages as biocontrol agents in food. J Food Prot. 2005; 68(2):426-37.
3. Sulakvelidze A, Barrow P. Phage therapy in animals and agribusiness. In: Kutter, E, Sulakvelidze A. Bacteriophages: biology and applications. Boca Raton: CRC Press; 2005. p.335-80.
4. Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, Salamon P et al. Metagenomic analysis of an uncultured viral community from human feces. J Bacteriol. 2003; 185(20):6220-23.
5. Hagens S, Offerhaus ML. Bacteriophages – New weapons for food safety. Food Technol. 2008; 62(4): 46-54.
6. Greer GG. Bacteriophage control of foodborne bacteria. J Food Prot. 2005; 68(5):1102-11.
7. Goode D, Allen VM, Barrow PA. Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl Environ Microbiol. 2003; 69(8):5032-6.
8. Leverentz B, Conway WS, Alavidze Z, Janisiewicz WJ, Fuchs Y, Camp MJ et al. Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: a model study. J Food Prot. 2001; 64(8):1116-21.
9. Whichard JM, Sriranganathan N, Pierson FW. Suppression of Salmonella growth by wild-type and large-plaque variants of bacteriophage Felix O1 in liquid culture and on chicken frankfurters. J Food Prot. 2003; 66(2):220-5.
10. Pelczar JR, Chan ECS, Krieg NR. Microbiologia – conceitos e aplicação. 2ª ed. São Paulo: Makron; 1997. 525p.
11. Moselio S, Engleberg CN, Barry I. Microbiologia. 3a ed. São Paulo: Guanabara Koogan, 2002. 664p.
12. Atterbury RJ, Connerton PL, Dodd CE, Rees CE, Connerton IF. Application of host-specific bacteriophages to the surface of chicken skin leads to a reduction in recovery of Campylobacter jejuni. Appl Environ Microbiol. 2003; 69(10):6302-6.
13. Loc Carrillo C, Atterbury RJ, El-Shibiny A, Connerton PL, Dillon E, Scott A et al. Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl Environ Microbiol. 2005: 71(11): 6554–63.
14. Huff WE, Huff GR, Rath NC, Balog JM, Donoghue AM. Alternatives to antibiotics: utilization of bacteriophage to treat colibacillosis and prevent foodborne pathogens. Poul Sci. 2005; 84(4):655-9.
15. Toro H, Price SB, McKee S, Hoerr FJ, Krehling J, Perdue M et al. Use of bacteriophages in combination with competitive exclusion to reduce Salmonella from infected chicken. Avian Dis. 2005; 49(1):118-24.
16. Leverentz B, Conway WS, Camp MJ, Janisiewicz W, Abuladze T, Yang M et al. Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl Environ Microbiol. 2003; 69(8):4519-26.
17. Leverentz B, Conway WS, Janisiewicz W, Camp MJ. Optimizing concentration and timing of a phage spray application to reduce Listeria monocytogenes on honeydew melon tissue. J Food Prot. 2004; 67(8):1682-6.
18. Hendrix RW, Margareth CM, Smith R, Burns N, Ford ME, Hatful AG. Evolutionary relationships among diverse bacteriophages and prophages: All the world’ s a phage. Proc Natl Acad Sci. USA. 1999; 19, 2192-97.
19. Joklik WK, Willente HP, Amos DB, Wilfert, CM. Zinsser microbiología. 20a ed. Bogotá: Panamericana; 1994.
20. Modi R, Hirvi Y, Hill A, Griffiths MW. Effect of phage on survival of Salmonella Enteritidis during manufacture and storage of Cheddar cheese made from raw and pasteurized milk. J Food Prot. 2001; 64(7):927-33.
21. Kennedy JEJ, Bitton G. Bacteriophages in foods. In: Goyal SM, Gerba CP, Bitton G, editors. Phage ecology. New York: John Wiley & Sons; 1987. p.286-316.
22. Carlton RM, Noordman WH, Biswas B, Meester ED, Loessner MJ. Bacteriophage P100 for control of Listeria monocytogenes in foods: Genome sequence, bioinformatic analyses, oral toxicity study, and application. Reg Toxic Pharmacol. 2005; 43(3):301-12.
23. Chibani-Chennoufi S, Bruttin A, Dillmann ML, Brüssow H. Phage-host interaction: an ecological perspective. J Bacteriol. 2004; 186:3677-86.
24. Merril CR, Biswas B, Carlton R, Jensen NC, Creed GJ, Zullo S et al. Long-circulating bacteriophage as antibacterial agents. Proc Natl Acad Sci. USA. 1996; 93:3188-92.
25. Bruttin A, Brüssow H. Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother. 2005; 49(7):2874-78.
26. Joerger RD. Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poult Sci. 2003; 82(4):640-7.
27. Sklar IB, Joerger RD. Attempts to utilize bacteriophage to combat Salmonella enterica serovar Enteritidis infection in chickens. J Food Saf. 2001; 21(1):15-29.
28. Ackermann HW, Greer GG, Rocourt J. Morphology of Brochothrix thermosphacta phages. Microbios. 1988; 56(226):19-26.
29. Tanji Y, Shimada T, Yoichi M, Miyanaga K, Hori K, Unno H. Toward rational control of Escherichia coli 0157:H7 by a phage cocktail. Appl Microbiol Biotechnol. 2004; 64(2):270-4.
30. O’Flynn G, Ross RP, Fitzgerald GF, Coffey A. Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli 0157:H7. Appl Environ Microbiol. 2004; 70:3417-21.
31. Goldberg EL, Griuius L, Letellier L. Recognition, attachment, and injection. In: Karam JD. Molecular biology of bacteriophage T4. Washington,D.C.: American Society for Microbiology; 1994. p.347-56.
32. Sulakvelidze A, Alavidze Z, Morris JGJ. Bacteriophage therapy. Antimicrob Agents Chemother. 2001; 45(3):649-59.
33. Summers WC. Bacteriophage therapy. Annu Rev Microbiol. 2001; 55:437-51.
34. Guenter S, Huwyler D, Richard S, Loeesner MJ. Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Appl Environ Microbiol. 2009; 75(1):93-100.
35. Quiberoni A, Suarez VB, Reinheimer JA. Inactivation of Lactobacillus helveticus bacteriophages by thermal and chemical treatments. J Food Prot. 1999; 62(8):894-98.
36. Binetti AG, Reinheimer JA. Thermal and chemical inactivation of indigenous Streptococcus thermophilus bacteriophages isolated from Argentinian dairy plants. J Food Prot. 2000; 63(4):509-15.
37. Avsaroglu MD, Bozoglu F, Mustafa Akçelik M, Bayindirli A. Effect of high pressure on lactococcal bacteriophages. J Food Saf. 2009; 29:26-36.
38. Sinton LW, Hall CH, Lynch PA, Davies-Colley RJ. Sunlight inactivation of fecal indicator bacteria and bacteriophages from water stabilization pond effluent in fresh and saline waters. Appl Environ Microbiol. 2002; 68(3):1122-31.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2010 Instituto Adolfo Lutz Journal