Use of Spirulina platensis for recovering rats under protein restriction diet feeding
PDF (Português (Brasil))

Keywords

cyanobacterium
lipemia
histopathology
hemoparameter protein-calorie malnutrition

How to Cite

1.
Donato NR, Silva JA da, Costa MJ de C, Barbosa MQ, Bion FM, Carvalho Filho EV de, Veras RC, Medeiros IA de. Use of Spirulina platensis for recovering rats under protein restriction diet feeding. Rev Inst Adolfo Lutz [Internet]. 2010 Jan. 1 [cited 2024 Jul. 22];69(1):69-77. Available from: https://periodicos.saude.sp.gov.br/RIAL/article/view/32677

Abstract

This investigation aims at evaluating the effects of spirulin as a protein source for recovering the nutritional status of adult male rats. Forty-eight animals were studied and divided by four groups according to the feed diet: casein control (CC) group and spirulin control (SC) group, which received balanced diet during the whole experiment; recovered casein (RC) group and recovered spirulin (RS) group, which received a protein-restriction diet for 60 days and, afterwards, they were fed with balanced diet based on casein and spirulin, respectively, for 90 days. The centesimal and microbiological composition of Spirulina platensis and animals weight gains could be evaluated. After being euthanized the animal’s liver weight and its histopathologic aspects were analyzed, besides the body fat and blood components. The spirulin used contained 59.65% of protein, 3.72% of lipids, 17.53 of fixed mineral residue and 7.81% of humidity, and showed no microorganism contamination. Significant differences on body fat and serum protein contents could not be observed among the four animal groups. Regarding the weight gains, there was no difference among the animals of groups CC and SC in different weeks of experiments numbers 1, 5, 6, 7 and from 10 to 18, but these findings were not observed among the RC and RS groups. The relative liver weight decreased in animals under protein restriction, mainly in the group RC, but no histopathological alterations could be observed, and lipid contents decreased. In conclusion, the use of Spirulina platensis for recovering rat on protein restriction diet induces a reduction of lipemia.
https://doi.org/10.53393/rial.2010.v69.32677
PDF (Português (Brasil))

References

1. Food and Agriculture Organization of the United Nations. Assessment of the World Food Security Situation. Committee on World Food Security Twenty-Seventh Session, Rome, May 28, June 1, 2001.

2. Correia MI, Campos AC. Prevalence of hospital malnutrition in Latin America: the multicenter ELAN study. Nutrition. 2003;19: 823–5.

3. Pablo AM, Izaga MA, Alday LA. Assessment of nutritional status on hospital admission: nutritional scores. Eur J Clin Nutr. 2003; 57:824–31.

4. Pirlich M, Schütz T, Norman K, Gastell S, Lübke HJ, Bischoff SC et al. The German hospital malnutrition study. Clin Nutr. 2006; 25:563-72.

5. Wyszynski DF, Perman M, Crivelli A. Prevalence of hospital malnutrition in Argentina: preliminary results of a population-based study. Nutrition. 2003; 19:115–9.

6. D’Souza AL. Ageing and gut. Postgrad Med J. 2007; 83:44-53.

7. Moynihan PJ. The relationship between nutrition and systemic and oral well-being in older people. J Am Dental Assoc. 2007;138:493-497.

8. Kyle UG, Unger P, Mensi N, Genton L, Pichard C. Nutrition status in patients younger and older than 60 y at hospital admission: a controlled population study in 995 subjects. Nutrition. 2002; 18:463–9.

9. Volkert D, Hubsch S, Oster P, Schlierf G. Nutritional support and functional status in undernourished geriatric patients during hospitalization and 6 month follow up. Aging Clin Exp Res. 1996; 8:386–95.

10. Waitzberg DL, Caiaffa WT, Correia I TD. Hospital Malnutrition: The Brazilian National Survey (IBRANUTRI): a Study of 4000 Patients. Nutrition. 2001; 17: 573-80.

11. Fabre EE, Raynaud-Simon A, Golmard JL, Hebert M, Dulcire X, Succari M et al. Gene polymorphisms of oxidative stress enzymes: prediction of elderly renutrition. Am J Clin Nutr. 2008; 87:1504–12.

12.Tannenbaum SR. Single cell protein. Massachussets: MIT; 1975. v.2.

13. Yada E, Nagata H, NoguchiY, Kodera Y, Nishimura H, Inada Y et al. An Arginine Specific from Spirulina platensis. Mari Biothec.2005;7: 474-80.

14. Loh SP, Omar H, Abdullah SA, Ismail M. Effects of calciun supplementation on iron bioavailability from spirulina. Nutr Food Sci. 2006; 36:429-37.

15.Belay A, Ota Y, Miyakawa K, Shimatsu H. Curret knowledge on potential health benefits of spiruline. J Appl Physic. 1993; 5:235-41.

16. Belay A. The potential application of Spirulina (Arthorspira) as a nutritional and therapeutic supplement in health management. J Am Nutraceutic. 2002; 5:27-48.

17. Babadzhanov AS, Abdusamatova N, Yusupova FM, Faizullaeva N, Mezhlumyan LG, Malikova MKh. Chemical Composition of Spirulina platensis cultivated in Uzbekistan. Chem Nat Comp. 2004; 40:276-9.

18. Layman DK, Boileau RA, Erickson DJ, Painter JE, Shiue H, Sather C et al. A reduced ratio of dietary carbohydrate to protein improves body composition and blood lipid profiles during weight loss in adult women. J Nutr. 2003; 7:133-411.

19. Association of Official Analytical Chemistis. Official methods of analysis of the Association of Official Analytical Chemistis, 1975.

20. Vanderzant C, Splittstoesser DF. Compendium of methods for the microbiological examination of foods. 3ª ed. Washington: APHA; 1992.

21. Reeves PG, Nielsen FH, Fahey GC. AIN-93. Purified diets for laboratory rodents; final report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of AIN-76A Rodent Diet. J Nutri. 1993; 123:1939-51.

22. Merusse JLB, Lapichik VBV. Instalações e equipamentos. In: De Luca RR, Alexandre SR, Marques T, Souza NL, Merusse JLB, Neves SP (Eds.). Manual para técnicos em bioterismo. 2.ed. São Paulo: Winner Graph. 1996. p. 15-25.

23. Cecchi HM. Fundamentos teóricos e práticos em análise de alimentos. 2ª ed. Campinas: Unicamp; 2003. p. 22.

24.Friedewald WT, Levi RI, Fredrickson, DS. Estimation of the concentration of low density lipoproteins cholesterol in plasma without use of the ultracentrifuge. Clin Chem. 1972; 18:499-502.

25. Prazeres FG, Pessoa DCNP, Bion FM, Arnauld TMS. Exercício físico, crescimento e desenvolvimento: estudo em ratos jovens desnutridos pela dieta básica regional (DBR) e recuperados nutricionalmente. Rev Bras Educ Fís. 2004; 18:7-16.

26. Nagoaka S, Shimizu K, Kaneko H, Shibayama F, Morikawa K, Kanamaru Y et al. A novel protein C-phycocyanin plays a crucial role in the hypocholesterolemic action of spirulina platensisconcentrate in rats. J Nutr. 2005; 2425-30.

27. Pelizer LH, Danesi EDG, Rangel OC, Sassano CEN, Carvalho JCN, Sato S et al. Influence of inoculum age and concentration in Spirulina platensis cultivation. J Food Engin. 2003; 56:371-5.

28. Araújo KGL, Facchinetti AD, Santos CP. Influência da ingestão e biomassas de Spirulina (Arthrospira sp.) sobre o peso corporal e consumo de ração em ratos. Ciên Tecnol Alimen. 2003; 23:6-9.

29. Kern M, Ellison D, Marroquin Y, Ambrose M, Mosier K. Effects of soy protein supplemented with methionine on blood lipids an adiposity of rats. Nutrition. 2002; 18:654.

30. Nunes ML, Batista BB, Micheli F, Batistella V. Efeitos da desnutrição precoce e reabilitação nutricional em ratos. J Pediatr. 2002; 1:39-44.

31. Boza JJ, Moënnoz D, Vuichoud J, Jarret AR, Gaudard-de-Weck D, Fritsché R, et al. Food deprivation and refeeding influence growth, nutrient retention and functional recovery of rats. J Nutr. 1999; 129:1340-6.

32. Ismail MF, Ali DA, Fernando A, Abdraboh ME, Gaur RL, Ibrahim WM et al. Chemoprevention of rat liver toxicity and carcinogenesis by Spirulina. Int J Biol Sci. 2009; 5(4):377-87.

33. Torres-Durán PV, Miranda-Zamora R, Paredes-Carbajal MC, Mascher D, Blé-Castillo J, Díaz-Zagoya JC et al. Studies on the preventive effect of Spirulina maxima on fatty liver development induced by carbon tetrachloride, in the rat. J Ethnopharmacol. 1999; 64(2):141-7.

34. Torres-Durán PV, Miranda-Zamora R, Paredes-Carbajal MC, Mascher D, Díaz-Zagoya JC, Juárez-Oropeza MA. Spirulina maxima prevents induction of fatty liver by carbon tetrachloride in the rat. Biochem Mol Biol Int. 1998; 44(4):787-93.

35. Nagaoka S, Miwa K, Eto M, Kuzuya Y, Hori G, Yamamoto K. Soy protein peptic hydrolisate with bound phospholipids decreases micelar solubility and cholesterol absorption in rats and caco-2 cells. J Nutr.1999:1725-30.

36. Kouda K, Nakamura H, Kogno H, Ha-Kawa SK, Tokunaga R, Sawada S. Dietary restriction: effectes of short-term fasting on protein uptake and cell death/proliferation in the rat liver. Mec Ageing Develop. 2004; 125:375-80.

37. Ugochukwu NH, Figgers CL. Dietary caloric restriction modifies inflammatory responses in the livers of streptozotocin-induced diabetic rats. Nutr Res. 2006; 26:221-6.

38. Machado DF, Ferreira CLLF, Costa NMB, Oliveira TT. Efeito probiótico na modulação dos níveis de colesterol sérico no peso do fígado de ratos alimentados com dieta rica em colesterol e ácido cólico. Ciênc Tecnol Alim. 2003; 23:270-5.

39. Ribeiro Filho FF, Mariosa LS, Ferreira SRG, Zanella MT. Gordura visceral e Síndrome metabólica: mais que uma simples associação. Arq Bras Endocr Metabol. 2006; 50:230-8.

40. Brandsch C, Shukla A, Hirche F, Stangl GI, Eder K. Effect of proteins from beef, pork, and turkey meat on plasma and liver lipids of rats compared with casein and soy protein. Nutrition. 2006; 22:1162-70.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2010 Instituto Adolfo Lutz Journal

Downloads

Download data is not yet available.