Abstract
Because of some studies that have shown the occurrence of high correlation between free radicals generation and chronic degenerative diseases, the option for consuming antioxidant functional foods has been increasing. The excess of reactive species in the organism results in an oxidative stress that causes cellular and tissues damages. The microalgae Spirulina has been investigated due to its nutritional and antioxidant properties. The present study assessed the antioxidant capacity of microalgae Spirulina on Saccharomyce cerevisiae yeast, as a biological model, which has been exposed to stressor 1.1’ - dimethyl - 4.4’ - bipyridyl (paraquat) at 0.10 and 15 mM concentrations. The antioxidant potential was evaluated on cellular survival by plaque assay and on lipoperoxidation technique (values of TBA). The cellular survival rate increased significantly (p ≤ 0.05) when treated with both paraquat and Spirulina, in comparison to those treated only with paraquat. The stressor agent caused a significant increase (p ≤ 0.05) in lipoperoxidation values (TBA), which was attenuated by treating with Spirulina, not differing from the control treatment (p > 0.05). Therefore, the microalgae Spirulina shows antioxidant capacity, which protects yeast cells against the oxidative damages caused by paraquat.References
1. Hasler CM. Functional Foods for Health Program. Department of Food Science and Human Nutrition da University of Illinois. Food Technol. 1998; 52: 57-62.
2. Drodge W. Free radical in the physiological control of cell function. Phys. Rev. 2002; 41: 47-95.
3. Finkel T. Holbrook. N J Nature (London, U.K.) 2000; 408: 239-41.
4. Halliwell B, Gutteridge JMC. Free Rad. in Biol. and Med. 3 ed. Clarendon. Oxford, 2000.
5. Bulkley GB. Free radicals and other reactive oxygen metabolites: clinical relevance and the therapeutic efficacy of antioxidant therapy. Surgery. 1993; 113: 479-483.
6. Smith P, Heath D. Paraquat. CRC Crit. Rev. Toxicol. 1976; 4: 411-45.
7. Farrington JA. Bipyridylium quaternary salts and related compounds. V. Pulse radiolysis studies of the reaction of paraquat radical with oxygen. Implications for the mode of action of bipyridyl herbicides. Biochem. Biophys. Acta. 1973; 314: 372-81.
8. Annapura VV, Deosthale Y G, Bamji M S. Spirulina as a source of vitamin A. Plant Foods Hum. Nutr. 1991; 41: 125-34.
9. Careri M, Furlattini L, Mangia A, Musc M, Anklam E, Theobald A et al. Supercritical fluid extraction for liquid chromatographic determination of carotenoids in Spirulina Pacifica algae: a chemometric approach. J. Chromat. 2001; 912: 61-71.
10. Reddy CM, Bhat VB, Kiranmai G, Reddy MN, Reddanna P, Madyastha KM. Selectiveinhibition of cyclooxygenase-2 by C-phycocyanin, a biliprotein from Spirulina platensis. Biochem. Biophys. Res. Commun. 2000; 277: 599-603.
11. Richmond A. Handbook of Microalgal Mass Culture. Boston: CRC Press. ISBN 0-84933240-0. 1990.
12. Belay A. The potential application of Spirulina (Arthrospira) as a nutritional and therapeutic supplement in health management. J. of the American Nutrac. Assoc. 2002; 5 (2): 27-48.
13. Henriques JAP, Dafré AL, Picada JN, Marisa AF, Salvador M. Espécies reativas de oxigênio e avaliação de antioxidante em sistemas biológicos. In: Serafini LA, Barros NM, Azevedo JL. Biotecnol. na Agricult. e na Agroind. Guaíba: Agropecuária. 2001; 1: 227-52.
14. Soares DG, Andreazza AC, Salvador M. Sequestering ability of butylated hydroxytoluene, propyl gallate, resveratrol, and vitamins C and E against ABTS, DPPH, and hydroxyl free radicals in chemical and biological systems. J. Agric. Food Chem. 2003; 51: 1077-80.
15. Espín JC, Soler-Rivas C, Wichers HJ. Characterization of the total free scavenger capacity of vegetable oils and oil fractions using 2,2 diphenyl- 1-picrylhydrazyl radical. J. Agric. Food Chem. 2000; 48: 648-56.
16. Benzie IFF, Szeto YT. Total antioxidant capacity of teas by the ferric reducing/ antioxidant power assay. J. Agric. Food Chem. 1999; 47: 633-6.
17. Farombi EO, Onyema OO. Monosodium glutamate-induced oxidative damage and genotoxicity in the rat: modulatory role of vitamin C, vitamin E and quercetin. Hum. Exp. Toxicol. 2006; 25: 251-9.
18. Diniz YS. Toxicity of hipercaloric diet and monosodium glutamate: oxidative stress and metabolic shifting in hepatic tissue. Food Chemical Toxicol. 2004; 42: 313-9.
19. Soares DG, Andreazza AC, Salvador M. Avaliação de compostos antioxidantes em células da levedura Saccharomyces cerevisiae. Brazilian J. of Pharm. Sci. 2005; 41.
20. Lowry HO, Rosenbrough N J, Farr A L, Randall R J. Protein measurement with the Folin phenol reagent. J.Biol. Chem. 1951; 193: 265-75.
21. Montgomery DC, Runger GC. Applied statistics and probability for engineers. Wiley.
22. Soares DG, Andreazza AC, Salvador M. Saccharomyces cerevisiae como modelo biológico para avaliação da capacidade antioxidante de compostos. Rev. Bras. Farm. 2004; 85: 45-7.
23. Esterbauer H, Cheeseman K. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynoneal. Method. Enzymol. 1990; 186: 407-8.
24. Rodrigues CM, Spellman SR, Sola S, Grande AW, Linehan-Stieers C, Low WC et al. Neuroprotection by a bile acid in an acute stroke model in the rat. J. Cereb. Blood Flow Metab. 2002; 22: 463–71.
25. Alexi T, Borlongan CV, Faull RL, Williams CE, Clark RG, Gluckman PD et al. Neuroprotective strategies for basal ganglia degeneration: Parkinson’s and Huntington’s diseases. Prog. Neurobiol. 2000; 60: 409–70.
26. Bruce-Keller AJ, Umberger G, Mcfall R, Mattson MP. Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Ann. Neurol. 1999; 45: 8–15.
27. Mattson MP, Pedersen WA, Duan W, Culmsee C, Camandola S. Cellular and molecular mechanisms underlying perturbed energy metabolism and neuronal degeneration in Alzheimer’s and Parkinson’s diseases. Ann. N.Y. Acad. Sci. 1999; 893: 154–75.
28. Halliwell B, Gutteridge JM. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 1984; 219: 1–14.
29. Freeman BA, Crapo JD. Biology of disease: free radicals and tissue injury. Lab. Invest. 1982; 47: 412–26.
30. Ahmad M, Yousuf S, Khan MB, Hoda MN, Ahmad AS, Ansari MA et al. Attenuation by Nardostachys jatamansi of 6-hydroxydopamine-induced parkinsonism in rats: behavioral, neurochemical, and immunohistochemical studies. Pharmacol. Biochem. Behav. 2006; 83: 150–60.
31. Butterfield DA, Koppal T, Subramaniam R, Yatin S. Vitamin E as an antioxidant/free radical scavenger against amyloid beta-peptide-induced oxidative stress in neocortical synaptosomal membranes and hippocampal neurons in culture: insights into Alzheimer’s disease. Rev. Neurosci. 1999; 10: 141–9.
32. Jenner P, Olanow CW. Oxidative stress and the pathogenesis of Parkinson’s disease. Neurol. 1996; 47: 161-70.
33. Pompella A. Biochemistry and histochemistry of oxidant stress and lipid peroxidation. Intern. J. Vitamin Nutrit. Res. 1997. 67: 289-97.
34. Dalla Corte CL. Avaliação dos efeitos do tratamento crônico com neurolépticos e sua interação com substâncias potencialmente antioxidantes sobre parâmetros de estresse oxidativo no fígado e rim de ratos. [Dissertação de mestrado do Programa de Pós-Graduação em Ciências Biológicas – Bioquímica Toxicológica]. Santa Maria – RS. Universidade Federal de Santa Maria. 2008.
35. Dani C, Pasquali MAB, Oliveira MR, Umezu FM, Salvador M, Henriques JAP et al. Protective effects of purple grape juice on carbon tetrachloride-induced oxidative stress in brain of adult wistar rats. J. Med. Food. 2008; 11: 55-61.
36. Wagner C, Fachineto R, Dalla Corte CL, Brito VB, Severo D, Dias GOC et al. Quercitrin, a glycoside form of quercetin, prevents lipid peroxidation in vitro. Brain Res. 2006; 192-8.
37. Ko SH, Choi SW, Ye SK, Cho BL, Kim HS, Chung MH. Comparison of the antioxidant activities of nine different fruits in human plasma. J. Medic. Food. 2005; 8: 41-6.
38. Zeiger E. Mutagenicity of chemicals added to food. Mutation Res. 1999; 250: 53-61.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2010 Instituto Adolfo Lutz Journal