Lipid oxidation of chicken meat and the impact of the addition of sage (Salvia officinalis, L.) and garlic (Allium sativum, L.) as natural antioxidants
PDF (Português (Brasil))

Keywords

fatty acids
high pressure
cardiovascular diseases
cholesterol oxides
nutritional quality

How to Cite

1.
Mariutti LRB, Bragagnolo N. Lipid oxidation of chicken meat and the impact of the addition of sage (Salvia officinalis, L.) and garlic (Allium sativum, L.) as natural antioxidants. Rev Inst Adolfo Lutz [Internet]. 2009 Jan. 1 [cited 2024 Jul. 3];68(1):1-11. Available from: https://periodicos.saude.sp.gov.br/RIAL/article/view/32736

Abstract

Preserving food quality for long periods requires the use of antioxidants and nowadays, the trend toward consuming foodstuff free from synthetic additives led to the research of natural sources of food preservatives, such as sage and garlic. Chicken meat has a high content of polyunsaturated fatty acids (PUFA) being quite prone to lipid oxidation. The cholesterol oxidation, the changes in fatty acid profile, specially the degradation PUFA, and the formation volatile aldehydes derived from lipid oxidation could be considered as the main factors responsible for the quality and nutritional losses during processing and storage in chicken meat. In addition, dietary intake of oxidised lipids has been constantly investigated by the medical area due to the high correlations between the consumption of these lipids and the development of cardiovascular and other degenerative diseases.
https://doi.org/10.53393/rial.2009.v68.32736
PDF (Português (Brasil))

References

1. Paniangvait P, King AJ, Jones AD, German BG. Cholesterol oxides in foods of animal orign. J Food Sci 1995; 60(6): 1159-74.

2. Lercker G, Rodriguez-Estrada MT. Cholesterol oxidation mechanisms. In: Guardiola F, Dutta PC, Codony R, Savage GP, editores. Cholesterol and phytosterol oxidation products: Analysis, occurence, and biological effects. Champaign: Ed. Springer 2002. p. 1-25.

3. Hur SJ, Park GB, Joo ST. Formation of cholesterol oxidation products (COPs) in animal products. Food Control 2007; 18(8): 939-47.

4. Vine DF, Croft KD, Beilin LJ, Mamo JCL. Absorption of dietary cholesterol oxidation products and incorporation into rat lymph chylomicrons. Lipids 1997; 32(8): 887-93.

5. Bascoul J, Domergue N, Mourot J, Derby G, Crastes de Paulet A. Intestinal absortion and fecal excretion of 5,6α-epoxy-5α-cholesta-3β-ol by the male wistar rat. Lipids 1986; 21(12): 744-7.

6. Peng SK, Taylor CB, Hill JC, Morin RJ. Cholesterol oxidation derivatives and arterial endothelial damage. Atherosclerosis 1985; 54(2): 121-33.

7. Hodis HN, Crawford DW, Sevanian A. Cholesterol feeding increases plasma and aortic tissue cholesterol oxide levels in parallel: further evidence for the role of cholesterol oxidation in atherosclerosis. Atherosclerosis 1991; 89(2/3): 117-26.

8. Brown O, Jessup W. Oxysterols and atherosclerosis. Atherosclerosis. 1999, 142(1): 1-28.

9. Garcia-Cruset S, Carpenter KLH, Codony R, Guardiola F. Cholesterol oxidation products and atherosclerosis. In: Guardiola F, Dutta PC, Codony R, Savage GP, editores. Cholesterol and phytosterol oxidation products: Analysis, occurence, and biological effects. Champaign: Ed. Springer 2002 p. 241-77.

10. Sevanian A, Peterson AR. The cytotoxic and mutagenic properties of cholesterol oxidation products. Food Chem Toxicol 1986 24(10/11): 1103-10.

11. Ohtani K, Miyabara K, Okamoto E, Kamel M, Matsui-Yuasa I. Cytotoxicity of 7 cetocholesterol toward cultured rat hepatocytes and the effect of vitamin E. Biosci Biotech Bioch 1996 60(12): 1989-93.

12. Ohtani K, Terada E, Kamel M, Matsui-Yuasa I. Cy t o t oxicity of cholestane 3β,5α,6β-triol on cultured intestinal crypt cells (IEC-6). Biosci Biotech Bioch 1997 61(4): 573-6.

13. Lizard G, Lemaire S, Monier S, Gueldry S, Néel D, Gambert P. Induction of apoptosis and of interleukin-1βsecretion by 7β-hydroxycholesterol and 7-ketocholesterol: partial inhibition by Bcl-2 overexpression. FEBS Letters 1997 419(2/3): 276-80.

14. Lemaire-Ewing S, Prunet C, Montange T, Vejux A, Berthier A, Bessède G, et al. Comparison of the cytotoxic, pro-oxidant and pro-infl ammatory characteristics of different oxysterols. Cell Biol Toxicol 2005 21(2): 97–114.

15. Smith LL, Johnson BH. Biological activities of oxysterols. Free Radical Bio Med 1989 7(3): 285-332.

16. Osada K. Cholesterol oxidation products: other biological effects. In: Guardiola F, Dutta PC, Codony R, Savage GP, editores. Cholesterol and phytosterol oxidation products: Analysis, occurence, and biological effects. Champaign: Ed. Springer 2002 p. 278-318.

17. Leonarduzzi G, Sottero B, Poli G. Oxidized products of cholesterol: Dietary and metabolic origin, and proatherosclerotic effects (review). J Nutr Biochem 2002 13(12): 700-10.

18. Kolsch H, Lutjohann D, Tulke A, Bjorkhem I, Rao ML. The neurotoxic effect of 24 hydroxycholesterol on SH-SY5Y human neuroblastoma cells. Brain Research 1999 818(1): 171-5.

19. Lutjohann D, Papassotiropoulos A, Bjorkhem I, Locatelli S, Bagli M, Oehring RD, et al. Plasma 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients J Lipid Res 2000 41(2): 195-8.

20. Girao H, Mota MC, Ramalho J, Pereira P. Cholesterol oxides accumulate in human cataracts. Exp Eye Res 1998 66(5): 645-52.

21. Ferderbar S, Pereira EC, Apolinário E, Bertolami MC, Faludi A, Monte O, et al. Cholesterol oxides as biomarkers of oxidative stress in type 1 and type 2 diabetes mellitus. Diabetes Metab Res Rev 2007 23(1): 35–42.

22. Endo K, Tomokazu O, Saiki A, Ban N, Ohira M, Koide N, et al. Determination of serum 7-ketocholesterol concentrations and their relationships with coronary multiple risks in diabetes mellitus. Diabetes Res Clin Pr 2008 80(1): 63–8.

23. Finocchiaro ET, Richardson T. Sterol oxides in foodstuffs: a review. J Food Protec 1983 46(10): 917-25.

24. Schmitz G, Ecker J. The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res 2008 47(2): 147-55.

25. Keys A, Parlin RW. Serum cholesterol response to changes in dietary lipids. Am J Clin Nutr 1966 19(3): 175–81.

26. Simopoulos AP. Essential fatty acids in health and chronic disease. Am J Clin Nutr 1999 70(3): 560S–9S.

27. Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 2002 56(8): 365-79.

28. DeFilippis AP, Sperling LS. Understanding omega-3’s. Am Heart J 2006 151(3): 564-70.

29. Judd JT, Clevidence BA, Muesing RA, Wittes J, Sunkin ME, Podczasy JJ. Dietary trans fatty acids: effects on plasma lipids and lipoproteins of healthy men and women. Am J Clin Nutr 1994 59(4): 861-8.

30. Judd JT, Baer DJ, Clevidence BA, Kris-Etherton P, Muesing RA, Iwane M. Dietary cis and trans monounsaturated and saturated FA and plasma lipids and lipoproteins in men. Lipids 2002 37(2): 123-31.

31. World Health Organization (Suiça). Diet, nutrition and the prevention of chronic diseases. Genebra: WHO 2003.

32. Department of Health (UK). Report on health and social subjects nº 46. Nutritional aspects of cardiovascular disease. Her Majesty’s Stationery Offi ce: Londres 1994.

33. Innis SM. Fatty acids and early human development. Early Hum Dev 2007 83(12): 761-6.

34. Florent-Béchard S, Malaplate-Armand C, Koziel V, Kriem B, Olivier J, Pillot T, et al. Towards a nutritional approach for prevention of Alzheimer’s disease: Biochemical and cellular aspects. J Neurol Sci 2007 262(1/2): 27–36.

35. Maraschiello C, Esteve E, García-Regueiro JA. Cholesterol oxidation in meat from chickens fed α-tocopherol and β-carotene-supplemented diets with different unsaturation grades. Lipids 1998 33(7): 705-13.

36. Grau A, Guardiola F, Grimpa S, Barroeta AC, Codony R. Oxidative stability of dark chicken meat through frozen storage: infl uence of dietary fat and α-tocopherol and ascorbic acid supplementation. Poult Sci 2001 80(11): 1630-42.

37. Conchillo A, Ansorena D, Astiasarán I. Combined effect of cooking (grilling and roasting) and chilling storage (with and without air) on lipid and cholesterol oxidation in chicken breast. J Food Prot 2003 66(5): 840-6.

38. Beltran E, Pla R, Yuste J, Mor-Mur M. Use of antioxidants to minimize rancidity in pressurized and cooked chicken slurries. Meat Sci 2004 66(3): 719-25.

39. Bonoli M, Caboni MF, Rodriguez-Estrada MT, Lercker G. Effect of feeding fat sources on the quality and composition of lipids of precooked ready-to-eat fried chicken patties. Food Chem2007 101(4): 1327-37.

40. Bragagnolo N, Danielsen B, Skibsted LH. Rosemary as antioxidant in pressure processed chicken during subsequent cooking as evaluated by electron spin resonance spectroscopy. Innovative Food Sci Emerging Technol 2007 8(1): 24-9.

41. Mariutti LRB, Nogueira GC, Bragagnolo N. Incidência de óxidos de colesterol em cortes de frango submetidos a diferentes tratamentos térmicos. In: Anais do XII Congresso Latino-Americano de Óleos e Gorduras. Florianópolis: Sección Latinoamericana de la American Oil Chemists’ Society, 2007: LAAOCS 010, 1-6.

42. Mariutti LRB, Orlien V, Bragagnolo N, Skibsted LH. Effect of sage and garlic on lipid oxidation in high-pressure processed chicken meat. Eur Food Res Technol 2008 227(2): 337-44.

43. Mariutti LRB. Efeito da adição de sálvia e alho na oxidação lipídica em carne de frango [Tese de Doutorado]. Campinas, São Paulo: Universidade Estadual de Campinas, 2009 171pp.

44. Rhee KS. Enzymic and nonenzymic catalysis of lipid oxidation in muscle foods. Food Technol 1998 42(6): 127-32.

45. Decker EA, Xu Z. Minimizing rancidity in muscle foods. Food Technol 1998 52(10): 54-9.

46. Monahan FJ. Oxidation of lipids in muscle foods: fundamental and applied concerns. In: Decker E, Faustman C, Lopez-Bote CJ, editores. Antioxidants in muscle foods – Nutritional strategies to improve quality. Canada: Ed. A John Wiley & Sons Inc.; 2000 p. 3-24.

47. Erickson MC. Lipid oxidation of muscle foods. In: Akoh CC, Min DB, editores. Food lipids: Chemistry, nutrition, and biotechnology 2nd ed. Nova Iorque: Ed. Marcel Dekker Inc.; 2002. Disponível em www.foodnetbase.com, acessado em 23/05/2006.

48. Lombardi-Boccia G, Martinez-Dominguez B, Aguzzi A. Total heme and non-heme iron in raw and cooked meats. J Food Sci 2002 67(5): 1738-41.

49. Lee JI, Kang S, Ahn DU, Lee M. Formation of cholesterol oxides in irradiated raw and cooked chicken meat during storage. Poult Sci 2001 80(1): 105-8.

50. Echarte M, Ansorena D, Astiasarán I. Consequences of microwave heating and frying on the lipid fraction of chicken and beef patties. J Agric Food Chem 2003 51(20): 5941-5.

51. Conchillo A, Ansorena D, Astiasarán I. Intensity of lipid oxidation and formation of cholesterol oxidation products during frozen storage of raw and cooked chicken. J Sci Food Agric 2005 85(1): 141-6.

52. Conchillo A, Ansorena D, Astiasarán I. The effect of cooking and storage on the fatty acid profi le of chicken breast. Eur J Lipid Sci Technol 2004 106(5): 301-6.

53. Nogueira GC, Mariutti LRB, Bragagnolo N. Alteração da relação ω6/ω3 de coxas de frango submetidas a diferentes métodos de cozimento. In: Anais do XII Congresso Latino-Americano de Óleos e Gorduras. Florianópolis: Sección Latinoamericana de la American Oil Chemists’ Society, 2007: LAAOCS 002, 1-6.

54. Nogueira GC, Mariutti LRB, Bragagnolo N. Relação entre o método de cozimento e a composição de ácidos graxos em peito de frango. In: Anais do XII Congresso Latino-Americano de Óleos e Gorduras. Florianópolis: Sección Latinoamericana de la American Oil Chemists’ Society, 2007: LAAOCS 015, 1-6.

55. Galvin K, Morrisey PA, Buckley DJ. Cholesterol oxides in processed chicken muscle as infl uenced by dietary α-tocopherol supplementation. Meat Sci 1998 48(1/2): 1-9.

56. Cantor AH, Decker EA, Collins VP. Fatty acids in poultry and egg products. In: Chow CK, editor. Fatty acids in foods and their health implications 3rd ed. Boca Raton: CRC Press; 2008. Disponível em www.foodnetbase.com, acessado em 15/10/2008.

57. Baggio SR, Bragagnolo N. Cholesterol oxides, cholesterol, total lipid and fatty acid contents in processed meat products during storage. Food Chem 2006 95(4): 611-9.

58. Baggio SR, Bragagnolo N. Fatty acids, cholesterol oxides and cholesterol in Brazilian processed chicken products. Ital J Food Sci 2006 18(2): 199-208.

59. Li N, Ohshima T, Shozen K, Ushio H, Koizumi C. Effects of the degree of unsaturation of coexisting triacylglycerols on cholesterol oxidation. J Am Oil Chem Soc 1994 71(6): 623-7.

60. Pikul J, Leszczynski DE, Bechtel PJ, Kummerow FA. Effect of frozen storage and cooking on lipid oxidation in chicken meat. J Food Sci 1984 49(3): 838-43.

61. Leistner L. Hurdle effect and energy saving. In: Downey WK, editor. Food Quality and Nutrition. Londres: Applied Science Publishers; 1978.

62. Leistner L, Gould GW. Hurdle technologies – combination treatments for food stability, safety and quality. Nova Iorque: Kluwer Academic / Plenum Publishers; 2002.

63. Orlien V, Hansen E, Skibsted LH. Lipid oxidation in high-pressure processed chicken breast muscle during chill storage: critical working pressure in relation to oxidation mechanism. Eur Food Res Technol 2000 211(2): 99-104.

64. Wiggers SB, Kroger-Ohlsen MV, Skibsted LH. Lipid oxidation in high-pressure processed chicken breast during chill storage and subsequent heat treatment: effect of working pressure, packaging atmosphere and storage time. Eur Food Res Technol 2004 219(2): 167-70.

65. Bragagnolo N, Danielsen B, Skibsted LH. Combined effect of salt addition and high-pressure processing on formation of free radicals in chicken thigh and breast muscle. Eur Food Res Technol 2006 223(5): 669-73.

66. Ma HJ, Ledward DA, Zamri AI, Frazier RA, Zhou GH. Effects of high pressure/thermal treatment on lipid oxidation in beef and chicken muscle. Food Chem 2007 104(4): 1575-9.

67. Jurdi-Haldeman D, Macneil JH, Yared DM. Antioxidant Activity of Onion and Garlic Juices in Stored Cooked Ground Lamb. J Food Protect 1987 50(5): 411-3.

68. Pizzocaro F, Senesi E, Babbini G. Effetto protettivo di salvia e rosmarino freschi su hamburger surgelati di carne bovina. Industrie Alimentari 1994 33(324): 289-94.

69. El-Alim SSLA, Lugasi A, Hóvári J, Dworschák E. Culinary herbs inhibit lipid oxidation in raw and cooked minced meat patties during storage. J Sci Food Agric 1999 79(2): 277-85.

70. Aguirrezabal MM, Mateo J, Dominguez MC, Zumalacarregui JM. The effect of paprika, garlic and salt on rancidity in dry sausages. Meat Sci 2000 54(1): 77-81.

71. Sun YM, Ockerman HW, Marriott NG. Garlic in Chinese sausage. J Muscle Foods 2000 11(1): 35-43.

72. Mc Carthy TL, Kerry JP, Kerry JF, Lynch PB, Buckley DJ. Assessment of the antioxidant potencial of natural food and plant extracts in fresh and previously frozen pork patties. Meat Sci 2001 57(2): 177-84.

73. Wong PYY, Kitts DD. The effects of herbal pre-seasoning on microbial and oxidative changes in irradiated beef steaks. Food Chem 2002 76(2): 197-205.

74. Yin MC, Cheng WS. Antioxidant and antimicrobial effects of four garlic-derived organosulfur compounds in ground beef. Meat Sci 2003 63(1): 23-8.

75. Sallam KI, Ishloroshi M, Samejima K. Antioxidant and antimicrobial effects of garlic in chicken sausage. Lebensm Wiss Technol 2004 37(8): 849-55.

76. Estevez M, Ramirez R, Ventanas S, Cava R. Sage and rosemary essential oils versus BHT for the inhibition of lipid oxidative reactions in liver pate. Lebensm Wiss Technol 2007 40(1): 58-65.

77. Gordon MH. Factors affecting lipid oxidation. In: Steel R, editor. Understanding and measuring the shelf-life of food. Boca Raton: CRC Press; 2004. Disponível em www.foodnetbase.com, acessado em 15/10/2008.

78. Chipault JR, Mizuno GR, Lundberg WO. The antioxidant properties of spices in foods. Food Technol 1956 10(5): 209-11.

79. Lai S, Gray JI, Smith DM, Booren AM, Crackel RL, Buckley DJ. Effects of oleoresin rosemary, tertiary butylhydroquinone, and sodium tripolyphosphate on the development of oxidative rancidity in restructured chicken nuggets. J Food Sci 1991 56(3): 616-20.

80. Cuppett SL, Hall III CA. Antioxidant activity of the Labiatae. Adv Food Nutr Res 1998 42: 245-71.

81. Madsen HL, Bertelsen G. Spices as antioxidants. Trends Food Sci Tech 1995 6(8): 271-7.

82. Mariutti LRB, Barreto GPM, Bragagnolo N, Mercadante AZ. Free radical scavenging activity of ethanolic extracts from herbs and spices commercialized in Brazil. Braz Arch Biol Technol 2008 51(6): 1225-32.

83. Fasseas MK, Mountzouris KC, Tarantilis PA, Polissiou M, Zervas G. Antioxidant activity in meat treated with orégano and sage essential oils. Food Chem 2007 106(3): 1188-94.

84. Cuvelier ME, Berset C, Richard H. Antioxidant constituents in sage (Salvia offi cinalis). J Agric Food Chem 1994 42(3): 665-9.

85. Wong JW, Hashimoto K, Shibamoto T.Antioxidant activities of rosemary and sage extracts and vitamin E in a model system. J Agric Food Chem 1995 43(10): 2707-12.

86. Krest I, Glodek J, Keusgen M. Cysteine sulfoxides and alliinase activity of some Allium species. J Agric Food Chem 2000 48(8): 3753-60.

87. Kyung KH, Kim MH, Park MS, Kim YS. Alliinase-independent inhibition of Staphylococcus aureus B33 by heated garlic. J Food Sci 2002 67(2): 780-5.

88. Block E, Ahmad S, Catalfamo JL, Jain MK, Apitzcastro R. Antithrombotic Organosulfur Compounds from Garlic -Structural, Mechanistic, and Synthetic Studies. J Am Chem Soc 1986 108(22): 7045-55.

89. Hirsch K, Danilenko M, Giat J, Miron T, Rabinkov A, Wilchek M, Mirelman D, Levy J, Sharoni Y. Effect of purifi ed allicin, the major ingredient of freshly crushed garlic, on cancer cell proliferation. Nutr Cancer 2000 38(2): 245-54.

90. Mousa AS. Discovery of angiogenesis inhibition by garlic ingredients: Potential anti cancer benefi ts. FASEB J 2001 15(4): A117.

91. Orekhov AN, Tertov VV. In vitro effect of garlic powder extract on lipid content in normal and atherosclerotic human aortic cells. Lipids. 1997; 32(10): 1055-60.

92. Srinivasan K, Sambaiah K, Chandrasekhara N. Spices as benefi cial hypolopidemic food adjuncts: a review. Food Rev Int. 2004; 20(2): 187-220.

93. Yin MC, Cheng W. Antioxidant activity of several Allium members. J Agric Food Chem 1998 46(10): 4097-101.

94. Nuutila M, Puupponen-Pimiã R, Aarni M, Oksman-Caldentey KM. Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chem 2003 81(4): 485-93.

95. Liu CT, Chen HW, Sheen LY, Kung YL, Chen PCH, Lii CK. Effect of garlic oil on hepatic arachidonic acid content and immune response in rats. J Agric Food Chem 1998 46(11): 4642-7.

96. Kang NS, Moon EY, Cho CG, Pyo S. Immunomodulating effect of garlic component, allicin, on murine peritoneal macrophages. Nutr Res 2001 21(4): 617-26.

97. Zhang XH, Lowe D, Giles P, Fell S, Connock MJ, Maslin DJ. Gender may affect the action of garlic oil on plasma cholesterol and glucose levels of normal subjects. J Nutr 2001 131(5): 1471-8.

98. Lawson LD, Wang ZJ, Papadimitriou D. Allicin release under simulated gastrointestinal conditions from garlic powder tablets employed in clinical trials on serum cholesterol. Planta Medica. 2001; 67(1): 13-8.

99. Singh DK, Porter TD. Inhibition of sterol 4 alpha-methyl oxidase is the principal mechanism by which garlic decreases cholesterol synthesis. J. Nutr 2006 136(3): 759S-64S.

100. Ali M, Al-Qattan KK, Al-Enezi F, Khanafer RMA, Mustafa T. Effect of allicin from garlic powder on serum lipids and blood pressure in rats fed with a high cholesterol diet. Prostag Leukot Ess 2000 62(4): 253-9.

101. Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, Darley-Usmar VM, Doeller JE, Kraus DW. Hydrogen sulfi de mediates the vasoactivity of garlic. PNAS 2007 104(46): 17977-82.

102. Fernández-López J, Zhi N, Aleson-Carbonell L, Pérez-Alvarez JA, Kuri V. Antioxidant and antibacterial activities of natural extracts: application in beef meatballs. Meat Sci 2005 69(3): 371-80.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2009 Instituto Adolfo Lutz Journal

Downloads

Download data is not yet available.