Astaxanthin: its use as natural food dye
PDF (Português (Brasil))

Keywords

salmon
carotenoids
food

How to Cite

1.
Ferreira M de M, Zamith HP da S, Abrantes S. Astaxanthin: its use as natural food dye. Rev Inst Adolfo Lutz [Internet]. 2015 Oct. 1 [cited 2024 Jul. 22];73(1):1-8. Available from: https://periodicos.saude.sp.gov.br/RIAL/article/view/33355

Abstract

The color and appearance of food are the first fundamental attributes, if not the most important, to be evaluated by consumers at the time of its acquisition. The food can be more nutritious, safer and more economical, however, if it is not attractive, its acquisition will not occur. Basically, salmon is a white fish that becomes pink by eating shrimp. The stored red pigment existing in the shrimp muscle or shell, which is accumulated in the adipose tissue, is acquired through the ingestion of algae and unicellular organisms by the marine shrimps. The carotenoids employed in the food, pharmaceutical, cosmetics and feed industries are natural colorants responsible for providing yellow, orange and red colors. As the salmon raised in aquaculture do not have access to the organism above mentioned, the astaxanthin (ATX), a substance that gives a pinkish color to salmon meat, is added to their feed. ATX (3,3'-dihydroxy-beta,beta-carotene-4, 4'-dione) is a oxygenated carotenoid pigment which confers the characteristic reddish-pink coloration to certain fish, crustaceans, birds and microorganisms. The ATX has potent activity in removing the free radicals and protecting against the lipid peroxidation and the damage caused by oxidation of cell and tissues membranes.
https://doi.org/10.18241/0073-98552014731584
PDF (Português (Brasil))

References

1. Valduga E, Tastsch PO, Tiggemann L, Treichel H, Toniazzo G, Zeni J. Produção de carotenóides: microrganismos como fonte de pigmentos naturais. Quim Nova.2009;32(9):2429-36.

2. Higuera-Ciapara I, Félix-Valenzuela L, Goycoolea FM. Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr. 2006;46(2):185-96.

3. Fonseca RAS, Burkert JFM, Kalil SJ, Burkert CAV. Seleção de linhagem de Phaffia rhodozyma para produção de astaxantina. In: XXI Congresso de Iniciação Científica e Tecnológica em Engenharia, VI Feira de Protótipos. CRICTE: Rio Grande do Sul; 2006.

4. Hu ZC, Zheng YG, Wang Z, Shen YC. pH control strategy in astaxanthin fermentation bioprocess by Xanthophyllomyces dendrorhous. Enz Microb Technol.2006;84:164-6.

5. Johnson EA, Schroeder WA. Singlet oxygen and peroxyl radicals regulate carotenoid biosynthesis in Phaffia rhodozyma. J Biol Chem.1995;270(31):18374-9.

6. Gross J. Pigments in vegetables: chlorophylls and carotenoids. New York: Van Nostrand Reinhold; 1991.

7. Rajasingh H, Oyehaug L, Vage DI, Omholt SW. Carotenoid dynamics in Atlantic salmon. BMC Biol.2006;4:1-15.

8. Kurashige M, Okimasu E, Inoue M, Utsumi K. Inhibition of oxidative injury of biological membranes by astaxanthin. Physiol Chem Phys Med NMR.1990; 22(1):27-38.

9. Chew BP, Park JS, Wong MW, Wong TS. A comparison of the anticancer actitives of dietary beta carotene, canthaxanthin and astaxanthin in mice vivo. Anticancer Res.1999;19(3A):1849-53.

10. Uchiyama K, Naito Y, Hasegawa G, Nakamura N, Takahashi J, Yoshikawa T. Astaxanthin protects beta-cells against glucose toxicity in diabetic db/db mice. Redox Rep.2002;7(5):290-3.

11. Naguib YMA. Antioxidant activities of astaxanthin and related carotenoids. J Agric Food Chem.2000;48(4):1150-4.

12. Goto S, Kogure K, Abe K, Kimata Y, Kitahama K, Yamashita E, et al. Efficient radical trapping at the surface and inside the phospholipid membrane is responsible for highly potent antiperoxidative activity of the carotenoid astaxanthin. Biochim Biophys Acta.2001;1512(2):251-8.

13. Wu TH, Liao JH, Hou WC, Huang FY, Maher TJ, Hu CC. Astaxanthin protects against oxidative stress and calcium-induced porcine lens protein degradation. J Agric Food Chem.2006;54(6):2418-23.

14. Schroeder WA, Johnson EA. Antioxidant role of carotenoids in Phaffia rodhozyma. J Gen Microbiol.1993;139:907-12.

15. Schroeder WA, Johnson EA. Singlet oxygen and peroxyl radicals regulate carotenoid biosynthesis in Phaffia rhodozyma. J Biol Chem.1995;270(31):18374-9.

16. Liu YS, Wu JY. Hydrogen peroxide-induced astaxanthin biosynthesis and catalase activity in Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol.2006;73(3):663-8.

17. Lim G-B, Lee S, Lee E, Haam S, Kim W. Separation of astaxanthin from red yeast Phaffia rhodozyma by supercritical carbon dioxide extraction. Biochem Eng J.2002;11:181–7.

18. Latscha T. Carotenoids: their nature and significance in animal feeds. Basel: Hoffman-La Roch; 1990. 110 p.

19. Torrissen OJ, Christiansen R. Requirements for carotenoids in fish diets. J Appl Ichthyol.1995;11(3-4):225-30.

20. Mccoy M. Astaxanthin market a hard one to crack. Chem Eng News.1999;77(14):15-7.

21. Gouveia L, Gomes E, Empis J. Potential use of microalgae (Chlorella vulgaris) in the pigmentation of rainbow trout (Oncorhynchusmykiss) muscle. Z Lebensm Unters Forsch.1996;202:75-9.

22. Moriel DG, Chociai MB, Machado IMP, Fontana JD, Bonfim TMB. Effect of feeding methods on the astaxanthin production by Phaffia rhodozyma in fed-batch process. Braz Arch Biol Technol.2005;48(3):397-401.

23. Muller-Feuga A. Microalgae for aquaculture. In: Richmond A, editor. Handbook of microalgal culture: biotechnology and applied phycology. Oxford: Blackwell Science; 2004. p.352–64.

24. Akiba Y, Sato K, Takahashi K, Matsushita K, Komiyama H, Tsunekawa H, et al. Meat color modification in broiler chickens by feeding yeast Phaffia rhodozyma containing high concentrations of astaxanthin. J Appl Poult Res.2001;10:154–61.

25. El Boushy AR, Raterink R. Egg yolk pigmentation. World Rev Anim Prod.1992;27(1):49-62.

26. Ogawa M, Maia EL, Fernandes AC, Nunes ML, Oliveira MEB, Freitas ST. Waste from the processing of farmed shrimp: a source of carotenoid pigments. Ciênc Tecnol Aliment.2007;27(2):333-7.

27. Ponsano EHG, Pinto MF, Garcia Neto M, Lacava PM. Evaluation of Rhodocyclus gelatinosus biomass for broiler pigmentation. J Appl Poult Res.2002;11(1):77-82.

28. Tolasa S, Cakli S, Ostermeyer, U. Determination of astaxanthin and canthaxanthin in salmonid. Eur Food Res Technol.2005;221:787–91.

29. Ffrench-Davis R. Debty-Equity swaps in Chile. In: Economic reforms in Chile: from dictatorship to democracy. Michigan, EUA: Michigan Press; 2002. 263 p.

30. Agosin M. Comercio y crecimiento en Chile. Rev CEPAL.1999;68:79-100.

31. CEPAL. América Latina y el Caribe: políticas para mejorar la inserción en la economia mundial. Santiago de Chile: Fondo de Cultura Económica; 1998.

32. Brasil. Ministério da Pesca e Aquicultura. Boletim estatístico da pesca e aquicultura: Brasil 2008-2009. Brasília: MPA; 2010. 99 p.

33. Brasil. Ministério da Pesca e Aquicultura. Boletim estatístico da pesca e aquicultura: Brasil 2010. Brasília: MPA; 2012.

34. Bauernfeind JC. Carotenoid vitamin A precursors and analogs in food and feeds. J Agric Food Chem.1972;20(3):456-73.

35. Marusich WL, Bauernfeind JC. Oxycarotenoids in poultry feeds. In: Bauernfeind JC, editor. Carotenoids as colorants and vitamin A precursors. New York: Academic Press; 1981. p. 319-462.

36. Williams WD. Origin and impact of color on consumer preference for food. Poultry Sci.1992;71(4):744-6.

37. Hudon J. Biotechnological applications of research on animal pigmentation. Biotechnol Adv. 1994;12(1):49-69.

38. Lorenz RT, Cysewski GR. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol.2000;18(4):160-7.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2015 Instituto Adolfo Lutz Journal

Downloads

Download data is not yet available.