Abstract
The reduction of the incidence of water-borne diseases is achieved with the diffusion of the use of chlorination techniques. However, in spite of the benefits of this disinfection method, the reactions of chlorine with the natural organic matter occurring in the water induce the production of disinfection by products such as trihalomethanes. These products have already been associated with the incidence of some cancers types. Considering that in the Brazilian legislation, it is not mandatory measuring and controlling the occurrence of trihalomethanes at the exit
and during the water distribution to the consumer. This study aimed at analyzing the relationship between chlorination and its by products. Thus, this project evaluated the concentrations of trihalomethanes in water collected at different points of supply in the municipality of Colombo, Paraná, Brazil, during the period from November 2015 to February 2016. Chromatographic methods were employed, besides the spreadsheets provided by the Health Surveillance of Colombo for comparison. The found values were tabulated and they were compared with the limits established by the Brazilian Ministry of Health- Ordinance No 05/2017. The results confirmed that the values of those provided by the concessionaire responsible for the city water treatment and supply, and being within the standards determined by the legislation.
References
1. Bracho N, Castillo J, Vargas L, Morales R. Formación de trihalometanos durante el proceso de desinfección en la potabilización de agua. Rev Téc Ing Univ Zulia.2009;32(3):231-7.
2. Alvarado DAM, Garcia HC, Solano AM. Cáncer gástrico en Costa Rica: ¿existe o no relación con la cloración del agua para consumo humano?. Rev costarric salud pública.2007;16(30):62-73. [acesso 2016 Nov 22]. Disponível em: http://www.scielo.sa.cr/pdf/rcsp/v16n30/3524.pdf
3. Vallejo-Vargas OI, Beltrán L, Franco P, Montoya-Navarrete CH, Alzate-Rodríguez EJ, Reyes H. Determinación de trihalometanos en aguas de consumo humano por microextracción en fase sólida- cromatografía de gases en Pereira, Colombia. Rev colom quím. 2015;44(1):23-9. http://dx.doi.org/10.15446/rev.colomb.quim.v44n1.54041
4. Meyer ST. O uso de cloro na desinfecção de águas, a formação de trihalometanos e os riscos potenciais à saúde pública. Cad Saúde Públ. 1994;10(1):99-110. http://dx.doi.org/10.1590/S0102-311X1994000100011
5. Manahan SE. Environmental Chemistry. 9. ed. London: CRC Press; 2009.
6. Bach L. Avaliação da formação de tri-halometanos em processos de cloração de água e estudo do efeito do pré-tratamento fundamentado no uso de radiação ultravioleta [dissertação de mestrado]. Curitiba (PR): Universidade Federal do Paraná; 2014.
7. Dos Santos SM, Gouveia N. Presença de trialometanos na água e efeitos adversos na gravidez. Rev bras epidemiol. 2011;14(1):106-19. http://dx.doi.org/10.1590/S1415-790X2011000100010
8. Grelier J, Bennett J, Patelaro E, Smith RB, Toledano MB, Rushton L et al. Exposure to disinfection by-products, fetal growth, and prematurity: a systematic review and meta-analysis. Epidemiology. 2010;21(3):300-13. http://dx.doi.org/10.1097/EDE.0b013e3181d61ffd
9. Baird C, Cann M. Química Ambiental. 4. ed. Porto Alegre (RS): Bookman; 2011.
10. Ministério da Saúde (BR). Portaria de Consolidação nº 5, de 28 de setembro de 2017, Anexo XX. Consolidação das normas sobre as ações e os
serviços de saúde do Sistema Único de Saúde.
Diário Oficial da União. Brasília, DF, 03 out. 2017. Disponível em: http://bvsms.saude.gov.br/bvs/saudelegis/gm/2017/prc0005_03_10_2017.html
11. Prefeitura Municipal de Colombo, Brasil . Dados Gerais de Colombo. [acesso 2016 Nov 22]. Disponível em: http://portal.colombo.pr.gov.br/perfil-do-municipio-de-colombo/
12. Font-Ribera L, Kogevinas M, Schmalz C, Zwiener C, Marco E, Grimalt JO et al. Environmental and personal determinants of the uptake of disinfection by-products during swimming. Environ Res. 2016;149:206-15. https://doi.org/10.1016/j.envres.2016.05.013
13. Font-Ribera L, Kogevinas M, Nieuwenhuijsen MJ, Grimalt JO, Villanueva CM. Patterns of water use and exposure to trihalomethanes among children in Spain. Environ Res. 2010;110(6):571-9. https://doi.org/10.1016/j.envres.2010.05.008
14. Tardif R, Catto C, Haddad S, Simard S, Rodriguez M. Assessment of air and water contamination by disinfection by-products at 41 indoor swimming pools. Environ Res. 2016;148:411-20. https://doi.org/10.1016/j.envres.2016.04.011
15. Cunha GC, Romão LPC, Costa AS, Alexandre MR. A green strategy for desorption of trihalomethanes adsorbed by humin and reuse of the fixed bed column. J Hazard Mater. 2012;209-210:9-17. https://doi.org/10.1016/j.jhazmat.2011.12.028
16. Tokmak B, Capar G, Dilek FB, Yetis U. Trihalomethanes and associated potential
cancer risks in the water supply in Ankara, Turkey. Environ Res. 2004; 96(3):345-52. https://doi.org/10.1016/j.envres.2003.11.005
17. Righi E, Bechtold P, Tortorici D, Lauriola P, Calzolari E, Astolfi G et al. Trihalomethanes, chlorite, chlorate in drinking water and risk of congenital anomalies: A population-based case-control study in Northern Italy. Environ Res. 2012;116:66-73. https://doi.org/10.1016/j.envres.2012.04.014
18. Tominaga MY, Midio AF. Exposição humana a trihalometanos presentes em água tratada. Rev Saúde Pública. 1999;33(4):413-21. http://dx.doi.org/10.1590/S0034-89101999000400013
19. Budziak D, Carasek E. Determination of trihalomethanes in drinking water from three different water sources in Florianopolis-Brazil using purge and trap and gas chromatography. J Braz Chem Soc. 2007;18(4):741-7. http://dx.doi.org/10.1590/S0103-50532007000400012
20. Brum MC, Oliveira JF. Removal of humic acid from water by precipitate flotation using cationic surfactants. Minerals Engineering. 2007;20(9):945-9. https://doi.org/10.1016/j.mineng.2007.03.004
21. Golfinopoulosa SK, Arhonditsi GB. Quantitative assessment of trihalomethane formation using simulations of reaction kinetics. Water Res. 2002;36(11):2856–68. https://doi.org/10.1016/S0043-1354(01)00509-7
22. Chowdhury S. Trihalomethanes in drinking water: Effect of natural organic matter distribution. Water SA. 2013;39(1):1-8. https://doi.org/10.4314/wsa.v39i1.1
23. World Health Organization – WHO (2008). Guidelines for drinking-water quality incorporating 1 st and 2nd addenda, Vol. 1, Recommendations. [acesso 2016 Abr 20]. Disponível em: http://www.who.int/water_sanitation_health/dwq/secondaddendum20081119.pdf
24. Motter J, Moyses ST, França BHS, De Carvalho ML, Moysés SJ. Análise da concentração de flúor na água em Curitiba, Brasil: comparação entre técnicas. Rev Panam Salud Publica. 2011;29(2):120-5.
25. Rosalém SF. Estudo de identificação e quantificação de trihalometanos em água de abastecimento [dissertação de mestrado]. Vitória (ES): Universidade Federal do Espírito Santo;2007.
26. Dos Santos MS, Martendal E, Carasek E. Determination of THMs in soft drink by solid-phase microextraction and gas chromatography. Food Chem. 2011;127(1):290-5. https://doi.org/10.1016/j.foodchem.2010.12.115
27.Paim APS, Souza JB, Adorno MAT, Moraes EM. Monitoring the trihalomethanes present in water after treatment with chlorine under laboratory condition. Environ Monit Assess. 2007;125(1-3):265-70. https://doi.org/10.1007/s10661-006-9518-9
28. Oliver SL, Ribeiro H. Variabilidade climática e qualidade da água do Reservatório Guarapiranga. Estud Av. 2014;28(82):95-128. http://dx.doi.org/10.1590/S0103-40142014000300007
29. Sanepar. Relatório qualidade da água. 2014. [acesso 2016 Nov 22] Disponível em: http://www.sanepar.com.br/sanepar/RelatorioQualidadeAgua/2014/079.pdf
30. Sanepar. Análise de água, 2016. [acesso 2016 Nov 22] Disponível em: http://www.sanepar.com.br/sanepar/usav/resultados.nsf/Analises?OpenAgent&Cod=079
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2018 Tuany Natana Schäfer, Beatriz Boger, Ingryd Isabelle Maia de Souza, Marilene da Cruz Magalhães Buffon, Rafael Gomes Ditterich, Milene Zanoni da Silva, Yanna Dantas Rattmann