Abstract
Bath sponges can carry contamination, because their structure favors microbial multiplication. Thus,
the objective of this work was to verify the efficiency of two disinfection methods to decrease the
number of microorganisms of clinical importance in bath sponges. Thirty bath sponges (15 loofah
and 15 synthetic) were analyzed and cut in three equal parts. One served as control. The other parts
were boiled disinfected for five minutes and immersed in 200 ppm sodium hypochlorite. The results
showed a mean contamination of heterotrophic bacteria of 4.1 LogUFC/mL and 4.7 LogUFC/mL,
for plants and synthetic, respectively. The majority (80%) of the sponges (10 synthetic and 14 loofah)
presented contamination by microorganisms of clinical importance. Disinfection methods
reduced the counts of heterotrophic bacteria by 3.3 LogUFC/mL with boiling for five minutes and
1.8 LogUFC/mL with disinfection with 200 ppm sodium hypochlorite. It is concluded, therefore,
that bath sponges present microbiological contamination of clinical importance and that boiling for
five minutes is an easily executed low-cost method that is able to control the amount of bacteria in
sponges used for bathing, reducing the risk of dissemination of disease.
References
folliculitis acquired through use of a contaminated
loofah sponge: an unrecognized potential public
health problem. J Clin Microbiol. 1993;31(3):480-3.
https://dx.doi.org/10.1128/JCM.31.3.480-483.1993
2. Frenkel LM. Pseudomonas folliculitis from sponges
promoted as beauty aids. J Clin Microbiol. 1993;31(10):2838.
https://dx.doi.org/10.1128/JCM.31.10.2838-.1993
3. Bottone EJ, Perez AA, Oeser JL. Loofah sponges
as reservoirs and vehicles in the transmission of
potentially pathogenic bacterial species to human
skin. J Clin Microbiol. 1994;32(2):469-72. https://
dx.doi.org/10.1128/JCM.32.2.469-472.1994
4. Nogueira AA, Cunha Neto Rd, Siliano PR. Análise
bacteriológica de esponjas de banho em uso e métodos de
desinfecção. Rev Sci Health. 2014;5(2):56-60. Disponível
em: http://arquivos.cruzeirodosuleducacional.edu.
br/principal/new/revista_scienceinhealth/14_mai_
ago_2014/Science_05_02_2014.pdf
5. Rossi EM. Avaliação da contaminação microbiológica
e de procedimentos de desinfecção de esponjas
utilizadas em serviços de alimentação [dissertação de
mestrado]. Porto Alegre (RS): Universidade Federaldo Rio Grande do Sul; 2010.
Disponível em: https://www.lume.ufrgs.br/handle/10183/24854
6. Maniatis AN, Karkavitsas C, Maniatis NA, Tsiftsakis
E, Genimata V, Legakis NJ. Pseudomonas aeruginosa
folliculitis due to non-O:11 serogroups: acquisition
through use of contaminated synthetic sponges. Clin
Infect Dis. 1995;21(2):437-9. https://doi.org/10.1093/
clinids/21.2.437
7. Oliveira F, Melo LD, Cerca N. Relationship between
biofilm formation and antibiotic resistance in commensal
isolates of Staphylococcus epidermidis. V International
Conference on Environmental, Industrial and Applied
Microbiology - BioMicroWorld; 2013 october; Madrid
(Spain): Abstracts in Proceedings. p. 583.
8. Duah M. Daptomycin for methicillin-resistant
Staphylococcus epidermidis native-valve endocarditis:
a case report. Ann Clin Microbiol Antimicrob.
2010;9(9):1-4. https://doi.org/10.1186/1476-0711-9-9
9. Jung K, Lüthje P, Lundahl J, Brauner A. Low
immunogenicity allows Staphylococcus epidermidis to
cause PD peritonitis. Perit Dial Int. 2011;31(6):672-8.
https://dx.doi.org/10.3747/pdi.2009.00150
10. Pinheiro L. Staphylococcus epidermidis e Staphylococcus
haemolyticus: detecção de genes codificadores de
biofilme, toxinas, resistênciaaantimicrobianosetipagem
clonal em isolados de hemoculturas [dissertação de
mestrado]. Botucatu (SP): Universidade Estadual
Paulista; 2014. Disponívl em: https://repositorio.
unesp.br/bitstream/handle/11449/110357/000783734.
pdf?sequence=1&isAllowed=y
11. Vasconcelos MA, Santos HS, Bandeira PN, Albuquerque
MR, Carneiro VA, Cavada BS. Prophylactic outcomes
of casbane diterpene in Candida albicans and Candida
glabrata biofilms. II International Conference on
Antimicrobial Research - ICAR; 2012 november;
Lisboa (PT): Abstracts in Proceedings. p. 321.
12. Centers for Disease Control and Prevention - CDC.
Staphylococcus aureus in Healthcare Settings. [acesso
2017 Mai 5]. Disponível em: http://www.cdc.gov/
HAI/organisms/staph.html
13. Lopes VK, Pereira SO, Castro ASB, Esperidião AV,
Oliveira IS, Pereira JL et al. Infecções multirresistentes
por Staphylococcus aureus: tratamento e profilaxia. J
Bras Med. 2014;102(4):21-8.
14. Pereira SG. Pseudomonas aeruginosa em ambiente
termal: prevalência e determinantes de patogenicidade
[tese doutorado]. Coimbra (PT): Universidade de
Coimbra; 2013. Disponível em: http://hdl.handle.
net/10316/23959
15. Centers for Disease Control and Prevention - CDC.
Pseudomonas aeruginosa in Healthcare Settings.
[acesso 2017 Mai 10]. Disponível em: https://www.
cdc.gov/hai/organisms/pseudomonas.html
16. Santos LL. Características da microbiota da superfície
ocular bacteriana em animais domésticos e silvestres
[dissertação de mestrado]. Curitiba (PR): Universidade
Federal do Paraná; 2012. Disponível em: https://
acervodigital.ufpr.br/handle/1884/25611?show=full
17. Gow NA, van de Veerdonk FL, Brown AJ, Netea MG.
Candida albicans morphogenesis and host defence:
discriminating invasion from colonization. Nat
Rev Microbiol. 2011;10(2):112-22. https://dx.doi.
org/10.1038/nrmicro2711
18. Mason KL, Downward JR, Mason KD, Falkowski
NR, Eaton KA, Kao JY et al. Candida albicans and
bacterial microbiota interactions in the cecum during
recolonization following broad-spectrum antibiotic
therapy. Infect Immun. 2012;80(10):3371-80. https://
dx.doi.org/10.1128/IAI.00449-12
19. Andrade JT, de Morais SE, Ferreira JMS, de Freitas
Araújo MG. Avaliação do potencial antifúngico de
compostos isolados de plantas frente a espécies de
C. albicans. V Jornada Acadêmica Internacional da
Bioquímica; janeiro de 2015; São Paulo: Blucher
Biochemistry Proceedings. 2015;1(1):85-6. Disponível
em: http://pdf.blucher.com.br.s3-sa-east-1.amazonaws.
com/biochemistryproceedings/v-jaibqi/0088.pdf
20. Kashem SW, Igyártó BZ, Gerami-Nejad M, Kumamoto
Y, Mohammed JA, Jarrett E, et al. Candida albicans
morphology and dendritic cell subsets determine T
helper cell differentiation. Immunity. 2015;42(2):356-
66. https://doi.org/10.1016/j.immuni.2015.01.008
21. Cox GM, Perfect JR. Infections due to Trichosporon
species and Blastoschizomyces capitatus (Saprochaete
capita). UpToDate. [internet]. [cited 2017 May 21].
Disponível em: https://www.uptodate.com/contents/
infections-due-to-trichosporon-species-and-blastoschizomyces-
capitatus-saprochaete-capitata
22. Saxena S, Uniyal V, Bhatt RP. Inhibitory effect of essentialoils
against Trichosporon ovoides causing Piedra Hair
Infection. Braz J Microbiol. 2012; 43(4):1347-54.
http://doi.org/10.1590/S1517-83822012000400016
23. Kurtzman C, Fell JW, Boekhout T, editors. The Yeasts:
a taxonomic study. 5.ed. USA: Elsevier Science; 2011.
24. Liu Y, Ma S, Wang X, Xu W, Tang J. Cryptococcus
albidus encephalitis in newly diagnosed HIV-patient
and literature review. Med Mycol Case Rep. 2013;
3:8-10. http://doi.org/10.1016/j.mmcr.2013.11.002
25. Wirth F, Goldani LZ. Epidemiology of
Rhodotorula: an emerging pathogen. Interdiscip
Perspect Infect Dis. 2012; 2012(1):465717. http://
doi.org/10.1155/2012/465717
26. Jorge AC. Doença de Marchiafava-Bignami: uma
rara entidade com prognóstico sombrio. Rev Bras Ter
Intensiva. 2013;25(1):68-72. https://doi.org/10.1590/
S0103-507X2013000100013
27. Coelho FA, Lopes SP, Pereira MO. Effective association
of tea tree essential oil with conventional antibiotics
to control Pseudomonas aeruginosa biofilms. Biofilms
5th International Conference; 2012 december; Paris.
p. 157 [abstract]. Disponível em: http://hdl.handle.
net/1822/28611
28. Corazza M, Carla E, Rossi MR, Pedna MF, Virgili
A. Face and body sponges: beauty aids or potential
microbiological reservoir? Eur J Dermatol.
2003;13(6):571-3.
29. Khatri JM, Jadhav MM, Tated GH. Sterilization and
orthodontics: A literature review. Int J Orthod Rehabil.
2017;8:141-6. https//doi.org/10.4103/ijor.ijor_36_17
30. Chávez de Paz LE, Bergenholtz G, Svensäter G.
The effects of antimicrobials on endodontic biofilm
bacteria. J Endod. 2010;36(1):70-7. https://dx.doi.
org/10.1016/j.joen.2009.09.017
31. Enxurreira EM. Propriedades e aplicações do
hipoclorito de sódio em endodontia [monografia].
Porto (PT): Universidade Fernando Pessoa; 2010.
Disponível em: http://hdl.handle.net/10284/1925
32. Nascimento MS, Silva N. Tratamentos químicos
na sanitização de morango (Fragaria vesca L.).
Braz J Food Technol. 2010; 13(1):11-7. https://doi.
org/10.4260/BJFT2010130100002
33. Rossi EM, Scapin D, Grando WF, Tondo EC.
Microbiological contamination and disinfection
procedures of kitchen sponges used in food services.
Food Nutr Sci. 2012;3(7):975–80. http://dx.doi.
org/10.4236/fns.2012.37129
34. 3Ikawa JY, Rossen JS. Reducing bacteria in household
sponges. J Environ Health. 1999; 62(1):18-22.
35. Sharma M, Eastridge J, Mudd C. Effective household
disinfection methods of kitchen sponges. Food
Control. 2009;20(3):310-3. http://dx.doi.org/10.1016/j.
foodcont.2008.05.020
36. Lopes MT. Caracterização microbiológica de matérias
primas e validação do binómio tempo x temperatura
de esterilização de preparados alimentares [mestrado].
Lisboa (PT): Universidade Católica Portuguesa; 2013.
Disponível em: http://hdl.handle.net/10400.14/16166
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2020 Instituto Adolfo Lutz Journal