Avaliação da estabilidade da capacidade antioxidante e de parâmetros físico-químicos de néctares de frutas caseiros
PDF

Palavras-chave

laranja (Citrus sinensis L. Osbeck)
manga (Mangifera indica L.)
maracujá (Passiflora edulis)
compostos fenólicos
ácido ascórbico
carotenoides

Como Citar

1.
Silva BP da, Balbino KP, Cardoso L de M, Aquino PP, Pinheiro-Sant’Ana HM, Ribeiro SMR. Avaliação da estabilidade da capacidade antioxidante e de parâmetros físico-químicos de néctares de frutas caseiros. Rev Inst Adolfo Lutz [Internet]. 25º de outubro de 2016 [citado 11º de dezembro de 2024];75:01-10. Disponível em: https://periodicos.saude.sp.gov.br/RIAL/article/view/33518

Resumo

Este estudo avaliou a capacidade antioxidante e os indicadores físico-químicos de néctares caseiros de laranja, manga e maracujá, mantidos sob refrigeração (5 ± 2 oC) por 24 horas. Os néctares foram preparados em laboratório e mantidos sob refrigeração, simulando as condições domésticas. As análises foram realizadas após o preparo (T0) e durante o acondicionamento sob refrigeração (1 h, 4 h e 24 h). Os sólidos solúveis, pH e cor foram determinados respectivamente por refratometria, potenciometria e colorimetria. Carotenoides e ácido ascórbico foram analisados por cromatografia líquida de alta eficiência; a concentração de compostos fenólicos foi determinada utilizando-se o reagente de Folin Ciocalteau e a atividade antioxidante pelo teste do DPPH. Ácido ascórbico, β-caroteno e compostos fenólicos foram identificados em todos os néctares. Foram encontrados α-caroteno e β-criptoxantina no néctar de laranja e licopeno no néctar de manga. Durante 24 horas de refrigeração, os compostos analisados e a atividade antioxidante mantiveram-se estáveis. De forma geral, os parâmetros físico-químicos também se mantiveram estáveis durante o período avaliado. Em conclusão, sob as condições utilizadas no presente estudo, os néctares não apresentaram alteração da capacidade antioxidante, podendo ser considerados fontes de carotenoides e vitamina C, mesmo se consumidos após 24 horas de preparo.

https://doi.org/10.53393/rial.2016.v75.33518
PDF

Referências

1. Dauchet L, Amouyel P, Dallongeville J. Fruits, vegetables and coronary heart disease. Nat Rev Cardiol. 2009;6(9):599-608. [DOI: https://dx.doi.org/10.1038/nrcardio.2009.131].

2. Stowe CB. The effects of pomegranate juice consumption on blood pressure and cardiovascular health. Complement Ther Clin Pract. 2011;17(2):113-5. [DOI: https://dx.doi.org/ 10.1016/j.ctcp.2010.09.004].

3. Mattei J, Malik V, Hu FB, Campos H. Substituting homemade fruit juice for sugar-sweetened beverages is associated with lower odds of metabolic syndrome among hispanic adults. J Nutr. 2012;142(6):1081-7. [DOI: https://dx.doi.org/ 10.3945/jn.111.149344].

4. Coelho RCLA, Hermsdorff HHM, Bressan J. Anti-inflammatory properties of orange juice: possible favorable molecular and metabolic effects. Plant Foods Hum Nutr. 2013;68(1):1-10. [DOI: https://dx.doi.org/10.1007/s11130-013-0343-3].

5. Zibadi S, Farid R, Moriguchi S, Lu Y, Foo LY, Tehrani PM, et al. Oral administration of purple passion fruit peel extract attenuates blood pressure in female spontaneously hypertensive rats and humans. Nutr Res. 2007;27(7):408-16. [DOI: https://dx.doi.org/10.1016/j.nutres.2007.05.004].

6. Joshipura KJ, Hu FB, Manson JE, Stampfer MJ, Rimm EB, Speizer FE, et al. The effect of fruit and vegetable intake on risk for coronary heart disease. Ann Intern Med. 2001;134(12):1106-14.

7. Poll H, Kist BB, Santos CE, Reetz ER, Carvalho C, Silveira DN. Anuário Brasileiro da Fruticultura. Santa Cruz do Sul (RS): Editora Gazeta; 2013.

8. Rosa SES, Cosenza JP, de Souza Leão LT. Panorama do setor de bebidas no Brasil. BNDES Setorial. 2006;23:101-50.

9. Verbeyst L, Hendrickx M, Loey A. Characterisation and screening of the process stability of bioactive compounds in red fruit paste and red fruit juice. Eur Food Res Technol. 2012;234(4):593-605. [DOI: https://dx.doi.org/10.1007/s00217-012-1667-1].

10. Igual M, García-Martínez E, Camacho MM, Martínez-Navarrete N. Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chem. 2010;118(2):291-9. [DOI: https://dx.doi.org/10.1016/j.foodchem.2009.04.118].

11. Instituto Adolfo Lutz (São Paulo - Brasil). Métodos físico-químicos para análise de alimentos: normas analíticas do Instituto Adolfo Lutz. 4ª ed. São Paulo (SP): Instituto Adolfo Lutz; 2005.

12. Bloor SJ. Overview of methods for analysis and identification of flavonoids. In: Lester P, editor. Methods in Enzymology (Volume 335). Cambridge: Academic Press; 2001. p. 3-14.

13. Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In: Lester P, editor. Methods in Enzymology (Volume 299). Cambridge: Academic Press; 1999. p. 152-78.

14. Rodriguez-Amaya DB, Raymundo LC, Lee T-C, Simpson KL, Chichester CO. Carotenoid changes in ripening Momordica charantia. Annals of Botany. 1976;40:615-24.

15. Pinheiro-Sant’Ana HM, Stringheta PC, Brandão SCC, Azeredo RMC. Carotenoid retention and vitamin A value in carrot (Daucus carota L.) prepared by food service. Food Chem. 1998;61(1-2):145-51. [DOI: https://dx.doi.org/10.1016/S0308-8146(97)00084-8].

16. Institute of Medicine (Washington, DC - United States). Dietary Reference Intakes (DRIs): vitamin A, vitamin K, arsenic, boron, cromium, copper, iodine, iron, manganese, molybdenium, nickel, silicon, vanadium and zinc. Washington, DC: National Academy Press; 2001. [DOI: 10.17226/10026].

17. Campos FM, Ribeiro SMR, Della Lucia CM, Pinheiro-Sant’Ana HM, Stringheta PC. Optimization of methodology to analyze ascorbic and dehydroascorbic acid in vegetables. Quím Nova. 2009;32(1):87-91. [DOI: https://dx.doi.org/10.1590/S0100-40422009000100017].

18. Ramos AM, Benevides SD, Perez R. Manual de boas práticas de fabricação (BPF) para indústrias processadoras de polpa de frutas. Visconde do Rio Branco (MG): Suprema Gráfica e Editora; 2010.

19. Devi Ramaiya S, Bujang JS, Zakaria MH, King WS, Shaffiq Sahrir MA. Sugars, ascorbic acid, total phenolic content and total antioxidant activity in passion fruit (Passiflora) cultivars. J Sci Food Agric. 2013;93(5):1198-205. [DOI: https://dx.doi.org/10.1002/jsfa.5876].

20. Velázquez-Estrada RM, Hernández-Herrero MM, Rüfer CE, Guamis-López B, Roig-Sagués AX. Influence of ultra high pressure homogenization processing on bioactive compounds and antioxidant activity of orange juice. IFSET. 2013;18:89-94. [DOI: https://dx.doi.org/10.1016/j.ifset.2013.02.005].

21. Sogi DS, Siddiq M, Roidoung S, Dolan KD. Total phenolics, carotenoids, ascorbic acid, and antioxidant properties of fresh-cut mango (Mangifera indica L., cv. Tommy Atkin) as affected by infrared heat treatment. J Food Sci. 2012;77(11):C1197-202. [DOI: https://dx.doi.org/10.1111/j.1750-3841.2012.02933.x].

22. Rodriguez-Amaya DB, Kimura M, Amaya-Farfan J. Tabela Brasileira de Composição de Carotenóides em Alimentos. Brasília (DF): Ministério do Meio Ambiente; 2008.

23. Soong Y-Y, Barlow PJ. Antioxidant activity and phenolic content of selected fruit seeds. Food Chem. 2004;88(3):411-7. [DOI: https://dx.doi.org/10.1016/j.foodchem.2004.02.003].

24. Halliwell B, Gutteridge JM, Guohua C, Cutler R. The definition and measurement of antioxidants in biological systems. Free Radic Biol Med. 1995;18(1):125-6.

25. Wang S, Meckling KA, Marcone MF, Kakuda Y, Tsao R. Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. J Agric Food Chem. 2011;59(3):960-8. [DOI: https://dx.doi.org/10.1021/jf1040977].

26. Philippi ST. Pirâmide dos alimentos: fundamentos básicos da nutrição. Barueri (SP): Editora Manole; 2008.

27. Zanoni B, Pagliarini E, Galli A, Laureati M. Shelf- life prediction of fresh blood orange juice. J Food Eng. 2005;70(4):512-7. [DOI: https://dx.doi.org/10.1016/j.jfoodeng.2004.10.019].

28. Martí N, Mena P, Cánovas JA, Micol V, Saura D. Vitamin C and the role of citrus juices as functional food. Nat Prod Commun. 2009;4(5):677-700.

29. Zepka LQ, Borsarelli CD, da Silva MAAP, Mercadante AZ. Thermal degradation kinetics of carotenoids in a cashew apple juice model and its impact on the system color. J Agric Food Chem. 2009;57(17):7841-5. [DOI: https://dx.doi.org/10.1021/jf900558a].

30. Pénicaud C, Achir N, Dhuique-Mayer C, Dornier M, Bohuon P. Degradation of β-carotene during fruit and vegetable processing or storage: reaction mechanisms and kinetic aspects: a review. Fruits. 2011;66(6):417-40. [DOI: https://dx.doi.org/10.1051/fruits/2011058].

31. Piljac-Žegarac J, Šamec D. Antioxidant stability of small fruits in postharvest storage at room and refrigerator temperatures. Food Res Int. 2011;44(1):345-50. [DOI: https://dx.doi.org/10.1016/j.foodres.2010.09.039].

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2016 Bárbara Pereira da Silva, Karla Pereira Balbino, Leandro de Morais Cardoso, Priscila Peixoto Aquino, Helena Maria Pinheiro-Sant’Ana, Sônia Machado Rocha Ribeiro

Downloads

Não há dados estatísticos.