Abstract
Data from familiar investigations, studies involving twins and from Mycobacterium leprae genomic, as well epidemiological observations of leprosy have shown the importance of the human genetic as determinant of the disease’s course, from the resistance, to the immunological dichotomy which defines tuberculoid and lepromatous poles. Thus, studies using genome-wide scan and association methods have shown some genomic regions whose alterations are candidates to risk factors for leprosy. However, these associations are weak and are not repeated in all different studies, which put in evidence the divergence in risk factors for different populations as well in design studies as causatives of this controversial data. In this manner, this review has as purpose the data collection which have already been described about human genomic regions that must participate in the genetic control of leprosy
References
2 Beiguelman, B. Some remarks on the genetics of leprosy resistance. Acta Genet Med Gemellol 1968;17: 584-594.
3 Ávila JL, Convit J. Studies on cellular immunity in leprosy. I Lysossomal enzymes. Int J Leprosy 1970;38(4): 359-64.
4 Modlin RL. Th1-Th2 paradigm: Insights from Leprosy. J Invest Dermatol 1994; 102(6): 828-32.
5 Foss NT. Aspectos Imunológicos da hanseníase. In: Simpósio: Hanseníase. Medicina Ribeirão Preto 1997; 30: 335-9.
6 Goulart IMB, Penha GO, Cunha G. Imunopatologia da hanseníase: a complexidade dos mecanismos da resposta imune do hospedeiro ao Mycobacterium leprae. Rev Soc Bras Méd Trop 2002; 35(4): 365-375.
7 Convit J, Pinardi ME, Rojas FA. Some considerations regardings the immunology of leprosy. Int J Leprosy 1971; 39(2):556-64.
8 Rea TH, Quismorio FP, Harding B et al. Immunologic responses in pacients with lepromatous leprosy. Arch Dermatol 1976; 112(6): 791-800.
9 Nogueira MES, Vilani-Moreno FR, Silva EA et al. Imunologia. In: Noções de Hansenologia. 2ed. Bauru, 2000.
10 Cole ST, Eiglmeier K, Parkhill J et al. Massive gene decay in the leprosy bacillus. Nature 2001; 409(6823): 1007-11.
11 Monot M, Honore N, Garnier T et al. On the origin of leprosy. Science 2005; 308(5724): 1040-2.
12 Blackwell JM, Black GF, Peacock CS et al. Immunogenetics of leishmanial and mycobacterial infections: the Belem Family Study. Philos Trans R Soc Lond B Biol Sci 1997; 352(1359): 1331-45.
13 Blackwell JM. Genetics of host resistance and susceptibility to intramacrophage pathogens: a study of multicase families of tuberculosis, leprosy and leishmaniasis in north-eastern Brazil. Int J Parasitol 1998; 28(1): 21-8.
14 Mira MT, Alcais A, Van Thuc N et al. Chromosome 6q25 is linked to susceptibility to leprosy in a Vietnamese population. Nat Genet 2003; 33(3): 412-5.
15 Shaw MA, Donaldson IJ, Collins A et al. Associat i o n a n d l i n k a g e o f l e p ro s y p h e n ot y p e s w i t h HL A class II and tumour necrosis fac tor genes. Genes Immun 2001; 2(4): 196-204.
16 Miller EN, Jamieson SE, Joberty C et al. Genome-wide scans for leprosy and tuberculosis susceptibility genes in Brazilians. Genes Immun 2004; 5(1):63-7.
17 Todd JR, West BC, McDonald JC. Human leukocyte antigen and leprosy: study in northern Louisiana and review. Rev Infect Dis 1990; 12(1): 63-74.
18 Hegazy AA, Abdel-Hamid IA, Ahmed SF et al. Leprosy in a high-prevalence Egyptian village: epidemiology and risk factors. Int J Dermatol 2002; 41(10): 681-686.
19 Izumi S, Sugiyama K, Matsumoto Y et al. Analysis of the immunogenetic background of Japanese leprosy patients by the HLA system. Vox Sang 1982; 42(5): 243-7.
20 Wang LM, Kimura A, Satoh M et al. HLA linked with leprosy in southern China: HLA-linked resistance alleles to leprosy. Int J Lepr Other Mycobact Dis 1999; 67(4): 403-8.
21 van Eden W, de Vries RR, Mehra NK et al. HLA segregation of tuberculoid leprosy: confirmation of the DR2 marker. J Infect Dis 1980; 141(6): 693-701.
22 van Eden W, Gonzalez NM, Vries RR et al. HLA-linked control of predisposition to lepromatous leprosy. J Infect Dis 1985; 151(1): 9-14.
23 Schauf V, Ryan S, Scollard D et al. Leprosy associated with HLA-DR2 and DQw1 in the population of northern Thailand. Tissue Antigens 1985; 26(4): 243-7.
24 Visentainer JE, Tsuneto LT, Serra MF et al. Association of leprosy with HLA-DR2 in a Southern Brazilian population. Braz J Med Biol Res 1997; 30(1): 51-9.
25 Rani R, Zaheer SA, Mukherjee R. Do human leukocyte antigens have a role to play in differential manifestation of multibacillary leprosy: a study on multibacillary leprosy patients from north India. Tissue Antigens 1992; 40(3): 124-127.
26 Singh M, Balamurugan A, Katoch K et al. Immunogenetics of mycobacterial infections in the North Indian population. Tissue Antigens 2007; 69 Suppl 1: 228-30.
27 Vanderborght PR, Pacheco AG, Moraes ME et al. HLA-DRB1*04 and DRB1*10 are associated with resistance and susceptibility, respectively, in Brazilian and Vietnamese leprosy patients. Genes Immun 2007; 8(4): 320-4.
28 Motta PM, Cech N, Fontan C et al. Role of HLA-DR and HLA-DQ alleles in multibacillary leprosy and paucibacillary leprosy in
the province of Chaco (Argentina). Enferm Infecc Microbiol Clin 2007; 25(10): 627-31.
29 Souza FC, Marcos EV, Ura S et al. Comparative study between the Mitsuda test and the human leukocyte antigens in leprosy patients. Rev Soc Bras Med Trop 2007; 40(2): 188-91.
30 Takata H, Sada M, Ozawa S et al. HLA and mycobacterial infection: increased frequency of B8 in Japanese leprosy. Tissue Antigens 1978; 11(1): 61-4.
31 Kim SJ, Choi IH, Dahlberg S. HLA and leprosy in Koreans. Tissue Antigens 1987; 29(3): 146-53.
32 Greiner J, Schleiermacher E, Smith T. The HLA system and leprosy in Thailand. Hum Genet 1978; 42(2): 201-13.
33 Shankarkumar, U. HLA associations in leprosy patients from Mumbai, India. Lepr Rev 2004; 75(1): 79-85.
34 Steinle A, Li P, Morris DL et al. Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family. Immunogenetics 2001; 53: 279–287.
35 Tosh K, Ravikumar M, Bell JT et al. Variation in MICA and MICB genes and enhanced susceptibility to paucibacillary leprosy in South India. Hum Mol Genet 2006; 15: 2880-2887.
36 Rajalingam R, Singal DP, Mehra NK. Transporter associated with antigen-processing (TAP) genes and susceptibility to tuberculoid leprosy and pulmonary tuberculosis. Tissue Antigens 1997; 49(2): 168-72.
37 Rothe J, Lesslauer W, Lotscher H et al. Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 1993; 364(6440): 798-802.
38 Beutler, BA. The role of tumor necrosis factor in health and disease. J Rheumatol Suppl 1999; 57: 16-21.
39 Westendorp RG, Langermans JA, Huizinga TW et al. Genetic influence on cytokine production and fatal meningococcal disease. Lancet 1997; 349:170–3.
40 Sarno EN, Santos AR, Jardim MR et al. Pathogenesis of nerve damage in leprosy: genetic polymorphism regulates the production of TNF alpha. Lepr Rev 2000; 71 Suppl: S154-8; discussion S158-60.
41 Roy S, McGuire W, Mascie-Taylor CG et al. Tumor necrosis factor promoter polymorphism and susceptibility to lepromatous leprosy. J Infect Dis 1997; 176(2): 530-2.
42 Vejbaesya S, Mahaisavariya P, Luangtrakool P et al. TNF alpha and NRAMP1 polymorphisms in leprosy. J Med Assoc Thai 2007; 90(6): 1188-92.
43 Santos AR, Almeida AS, Suffys PN et al. Tumor Necrosis Factor Promoter Polymorphism (TNF2) Seemed to Protect Against
Development of severe forms of leprosy In a Pilot Study in Brazilian Patients. Int J Leprosy 2000; 68(3): 325-327.
44 Santos AR, Suffys PN, Vanderborght PR et al. Role of tumor necrosis factor-alpha and interleukin-10 promoter gene polymorphisms in leprosy. J Infect Dis 2002; 186(11): 1687-91.
45 Levée G, Schurr E, Pandey JP.Tumor necrosis factor-alpha, interleukin-1-beta and immunoglobulin (GM and KM) polymorphisms in leprosy. A linkage study. Exp Clin Immunogenet 1997; 14(2): 160-5.
46 Wilson AG, Symons JA, McDowell TL et al. Effects of a polymorphism in the human tumor necrosis factor promoter on transcriptional activation. PNAS 1997; 94: 3195-3199.
47 Louis E, Franchimont D, Piron A et al. Tumour necrosis factor (TNF) gene polymorphism influences TNF-alpha production in lipopolysaccharide (LPS)-stimulated whole blood cell culture in healthy humans. Clin Exp Immunol 1998; 113(3): 401-6.
48 Brinkman BM, Zuijdeest D, Kaijzel EL et al. Relevance of the tumor necrosis factor alpha (TNF alpha) -308 promoter polymorphism in TNF alpha gene regulation. J Inflamm 1995; 46(1): 32-41.
49 Somoskovi A, Zissel G, Seitzer U et al. Polymorphisms at position -308 in the promoter region of the TNF-alpha and in the first intron of the TNF-beta genes and spontaneous and lipopolysaccharide-induced TNF-alpha release in sarcoidosis. Cytokine 1999; 11(11): 882-7.
50 Fitness J, Floyd S, Warndorff DK, et al. Large-scale candidate gene study of leprosy susceptibility in the karonga district of northern Malawi. Am J Trop Hyg 2004; 71(3): 330-340.
51 Cardoso CC. Caracterização de polimorfismos de base única em genes candidatos na Hanseníase. [Dissertação]. Rio de Janeiro (RJ): Fundação Oswaldo Cruz; 2006.
52 Alcais A, Alter A, Antoni G et al. Stepwise replication identifies a low-producing lymphotoxin-alpha allele as a major risk factor for early-onset leprosy. Nat Genet 2007; 39(4): 517-22.
53 Mira MT, Alcais A, Nguyen VT et al. Susceptibility to leprosy is associated with PARK2 and PACRG. Nature 2004; 427(6975): 636-40.
54 Malhotra D, Darvishi K, Lohra M et al. Association study of major risk single nucleotide polymorphisms in the common regulatory region of PARK2 and PACRG genes with leprosy in an Indian population. Eur J Hum Genet 2006; 14(4): 438-42.
55 Schurr E, Alcaïs A, de Léséleuc L et al Genetic predisposition to leprosy: A major gene reveals novel pathways of immunity to Mycobacterium leprae. Semin Immunol 2006; 18(6): 404-410.
56 Lima MC, Pereira GM, Rumjanek FD et al. Immunological cytokine correlates of protective immunity and pathogenesis in leprosy. Scand J Immunol 2000; 51(4): 419-28.
57 Misra N, Murtaza A, Walker B et al. Cytokine profile of circulating T cells of leprosy patients reflects both indiscriminate and polarized T-helper subsets: T-helper phenotype is stable and uninfluenced by related antigens of Mycobacterium leprae. Immunol 1995;86(1): 97.
58 Bienvenu J, Doche C, Gutowski MC et al. Production of proinflammatory cytokines and cytokines involved in the TH1/TH2 balance is modulated by pentoxifylline. J Cardiovasc Pharmacol 1995;25 Suppl 2:S80–4.
59 Lazarus M, Hajeer AH, Turner D et al. Genetic variation in the interleukin 10 gene promoter and systemic lupus erythematosus. J Rheumatol 1997; 24:2314–7.
60 Turner DM, Williams DM, Sankaran D et al. An investigation of polymorphism in the interleukin-10 gene promoter. Eur J
Immunogenet 1997; 24(1): 1-8.
61 Eskdale J, Keijsers V, Huizinga T, et al. Microsatellite alleles and single nucleotide polymorphisms (SNP) combine to form four major haplotype families at the human interleukin-10 (IL-10) locus. Genes Immun 1999; 1(2): 151-5.
62 Gibson AW, Edberg JC, Wu J, et al. Novel single nucleotide polymorphisms in the distal IL-10 promoter affect IL-10 production and enhance the risk of systemic lupus erythematosus. J Immunol 2001; 166(6): 3915-22.
63 Crawley E, Kay R, Sillibourne S et al. Polymorphic haplotypes of the interleukin-10 5’ flanking region determine variable interleukin-10 transcription and are associated with particular phenotypes of juvenile rheumatoid arthritis. Arthritis Rheum 1999; 42(6): 1101–1108.
64 Moraes MO, Pacheco AG, Schonkeren JJM et al. Interleukin-10 promoter single-nucleotide polymorphisms as markers for disease susceptibility and disease severity in leprosy. Genes Immun 2004; 5(7): 592-5.
65 Malhotra D, Darvishi K, Sood S et al IL-10 promoter single nucleotide polymorphisms are significantly associated with resistance to leprosy. Hum Genet 2005; 118(2): 295-300.
66 Ottenhoff THM, Verreck FAW, Lichtenauer-Kaligis EGR et al. Genetics, cytokines and human infectious disease: lessons from weakly phathogenic mycobacteria and salmonella. Nat Genet 2002; 32: 97-105.
67 Langrish CL, McKenzie BS, Wilson NJ, et al. IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev 2004; 202: 96-105.
68 Huang D, Cancilla MR, Morahan G. Complete primary structure, chromosomal localisation, and definition of polymorphisms of the gene encoding the human interleukin-12 p40 subunit. Genes Immun 2000; 1(8): 515-20.
69 Yilmaz V, Yentur SP, Saruhan-Direskeneli G. IL-12 and IL-10 polymorphisms and their effects on cytokine production. Cytokine 2005; 30(4): 188-94.
70 Morahan G, Kaur G, Singh M et al. Association of variants in the IL12B gene with leprosy and tuberculosis. Tissue Antigens 2007; 69 Suppl 1: 234-6.
71 Akahoshi M, Nakashima H, Miyake K et al. Influence of interleukin-12 receptor B1 polimorphisms on tuberculosis. Hum Genet 2003; 112:237-243.
72 Lee SB, Kim BC, Jin SH et al. Chae Missense mutations of the interleukin-12 receptor beta 1(IL12RB1) and interferongamma receptor 1 (IFNGR1) genes are not associated with susceptibility to lepromatous leprosy in Korea. Immunogenetics 2003; 55(3): 177-81.
73 Ohyama H, Ogata K, Takeuchi K et al. Polymorphism of the 5’ flanking region of the IL-12 receptor ß2 gene partially determines the clinical types of leprosy through impaired transcriptional activity. J Clin Pathol 2005; 58: 740-743.
74 Doffinger R, Altare F, Casanova JL. Genetic heterogeneity of Mendelian susceptibility to mycobacterial infection. Microbes Infect 2000; 2(13):1553-7.
75 Reynard MP, Turner D, Junqueira-Kipnis AP et al. Allele frequencies for an interferon-gamma microsatellite in a population of Brazilian leprosy patients. Eur J Immunogenet 2003; 30(2): 149-51.
76 Lio D, Marino V, Serauto A, et al. Genotype frequencies of the +874TàA single nucleotide polymorphism in the first intron of the interferon-gamma gene in a sample of Sicilian patients affected by tuberculosis. Eur J Immunogenet 2002; 29(5): 371-4.
77 Maderuelo DL, Arnalich F, Serantes R, et al. Interferon- and Interleukin-10 Gene Polymorphisms in Pulmonary Tuberculosis. Am J Respi Crit Care Med 2003; 167: 970-5.
78 Rossouw M, Nel HJK, Cooke GS et al. Association between tuberculosis and a polymorphic NFkappaB binding site in the interferon gamma gene. Lancet 2003; 361(9372): 1871-2.
79 Jouanguy E, Altare F, Lamhamedi S et al. Interferon- Receptor Deficiency in an Infant with Fatal Bacille Calmette Guérin Infection. N Engl J Med 1996; 335: 1956 - 1962.
80 Newport MJ, Huxley CM, Huston S et al. A Mutation in the Interferon- –Receptor Gene and Susceptibility to Mycobacterial Infection. N Engl J Med 1996; 335: 1941 - 1949.
81 Rigby, WF. The immunobiology of vitamin D. Immunol Today, Feb 1988; 9(2): 54-8.
82 Morrison NA, Qi JC, Tokita A et al. Prediction of bone density from vitamin D receptor alleles. Nature 1994; 367(6460): 284-7.
83 Selvaraj P, Chandra G, Jawahar MS et al. Regulatory role of vitamin D receptor gene variants of Bsm I, Apa I, Taq I, and Fok I polymorphisms on macrophage phagocytosis and lymphoproliferative response to mycobacterium tuberculosis antigen in pulmonary tuberculosis. J Clin Immunol 2004; 24(5): 523-32.
84 Jurutka PW, Remus LS, Whitfield GK et al. The Polymorphic N Terminus in Human Vitamin D Receptor Isoforms Influences Transcriptional Activity by Modulating Interaction with Transcription Factor IIB. Mol Endocrinol 2000; 14: 401.
85 Roy S, Frodsham A, Saha B et al. Association of vitamin D receptor genotype with Leprosy type. J Infec Dis 1999; 179: 187-191.
86 Lewis SJ, Baker I, Davey Smith G. Meta-analysis of vitamin D receptor polymorphisms and pulmonary tuberculosis risk. Int J Tuberc Lung Dis. 2005;9(10):1174-7.
87 Takeda KT, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003; 21: 335-376.
88 Underhill DM, Ozinsky A, Smith KD et al. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. PNAS 1999; 96: 14459-63.
89 Ozinsky A, Underhill DM, Fontenot JD et al. The repertoire for pattern recognition of pathogens by the innate immune
system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci USA. 2000 ; 97(25): 13766-71.
90 Krutzik SR, Ochoa MT, Sieling PA et al. Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nat Med. 2003; 9(5): 525-32.
91 Oliveira RB, Ochoa MT, Sieling PA et al. Expression of Toll-like receptor 2 on human Schwann cells: a mechanism of nerve
damage in leprosy. Infect Immun 2003; 71(3): 1427-33. 92 Kang TJ, Chae GT. Detection of Toll-like receptor 2 (TLR2) mutation in the lepromatous leprosy patients. FEMS Immunol Med Microbiol 2001; 31(1): 53-8.
93 Schröder NW, Hermann C, Hamann L et al. High frequency of polymorphism Arg753Gln of the Toll-like receptor-2 gene
detected by a novel allele-specific PCR. J Mol Med 2003; 81(6): 368-72.
94 Alcais A, Mira JL, Casanova JL, et al. Genetic dissection of immunity in leprosy. Curr Opin Immunol 2005;17(1): 44-8.
95 Malhotra D, Relhan V, Reddy BS et al. TLR2 Arg677Trp polymorphism in leprosy: revisited. Hum Genet 2005; 116(5): 413-5.
96 Bochud PY, Hawn TR, Siddiqui MR et al. Toll-Like Receptor 2 (TLR2) Polymorphisms Are Associated with Reversal Reaction in Leprosy. J Infect Dis 2008; 197(2): 253-261.
97 Johnson CM, Lyle EA, Omueti KO et al. Cutting Edge: A Common Polymorphism Impairs Cell Surface Trafficking and Functional Responses of TLR1 but Protects against Leprosy. J Immunol 2007; 178: 7520 - 7524.
98 Ogus AC, Yoldas B, Ozdemir T et al. The Arg753Gln polymorphism of the human Toll-like receptor 2 gene in tuberculosis disease. Eur Respir J 2004; 23: 219-23.
99 Skamene E, Gros P, Forget A et al. Genetic regulation of resistance to intracellular pathogens. Nature 1982; 297(5866): 506-9.
100 Fortier A, Min-Oo G, Forbes J et al. Single gene effects in mouse models of host: pathogen interactions. J Leukoc Biol 2005; 77: 868-877.
101 Abel L, Sanchez F, Thuc NV et al. Linkage of leprosy to the human NRAMP1 gene in Vietnamese families. Braz J Genet 1996; 19: 113.
102 Abel L, Sanchez FO, Oberti J et al. Susceptibility to leprosy is linked to the human NRAMP1 gene. J Infect Dis 1998; 177(1): 133-45.
103 Meisner SJ, Mucklow S, Warner G et al. Association of NRAMP1 polymorphism with leprosy type but not susceptibility to leprosy per se in west Africans. Am J Trop Med Hyg 2001; 65: 733-735.
104 Roger M, Levee G, Chanteau S et al. No evidence for linkage between leprosy susceptibility and the human natural resistance-associated macrophage protein 1 (NRAMP1) gene in French Polynesia. Int J Lepr Other Mycobact Dis 1997; 65(2): 197-202.
105 Alcais A, Sanchez FO, Thuc NV et al. Granulomatous reaction to intradermal injection of lepromin (Mitsuda reaction) is
linked to the human NRAMP1 gene in Vietnamese leprosy sibships. J Infect Dis 2000; 181(1): 302-8.
106 Ferreira FR, Goulart LR, Silva HD et al. Susceptibility to leprosy may be conditioned by an interaction between the NRAMP1
promoter polymorphisms and the lepromin response. Int J Lepr Other Mycobact Dis 2004; 72(4): 457-67.
107 Hatagima A, Opromolla DV, Ura S et al. No evidence of linkage between Mitsuda reaction and the NRAMP1 locus. Int J Lepr
Other Mycobact Dis 2001; 69(2): 99-103.
108 Ranque B, Alter A, Mira M Et al. Genomewide linkage analysis of the granulomatous mitsuda reaction implicates chromosomal regions 2q35 and 17q21. J Infect Dis 2007; 196(8): 1248-1252.
109 Garred P, Harboe M, Oettinger T et al. Dual role of mannanbinding protein in infections: another case of heterosis? Eur J Immunogenet, April 1, 1994; 21(2): 125-31.
110 Dornelles LN, Pereira-Ferrari L, Messias-Reason I. Mannanbinding lectin plasma levels in leprosy: deficiency confers protection against the lepromatous but not the tuberculoid forms. Clin Exp Immunol 2006; 145(3): 463-8.
111 Messias-Reason IJ, Boldt AB, Moraes Braga AC et al. The association between mannan-binding lectin gene polymorphism and clinical leprosy: new insight into an old paradigm. J Infect Dis 2007; 196(9): 1379-85.
112 Jamieson SE, Miller EN, Black GF et al. Evidence for a cluster of genes on chromosome 17q11-q21 controlling susceptibility to tuberculosis and leprosy in Brazilians. Genes Immun 2004; 5(1): 46-57.
113 Araki T, Milbrandt J. Ninjurin a novel adhesion molecule, is induced by nerve injury and promotes axonal growth. Neuron 1996; 17(2): 353-61.
114 Cardoso CC, Martinez AN, Guimaraes PE et al. Ninjurin 1 asp110ala single nucleotide polymorphism is associated with
protection in leprosy nerve damage. J Neuroimmunol 2007; 190(1-2): 131-8.
115 Kaur G, Sachdeva G, Bhutani LK et al. Association of polymorphism at COL3A and CTLA4 loci on chromosome 2q31-33 with the clinical phenotype and in-vitro CMI status in healthy and leprosy subjects: a preliminary study. Hum Genet 1997; 100(1): 43-50.
116 Holopainen PM, Partanen JA. Technical Note: Linkage Disequilibrium and Disease-Associated CTLA4 Gene Polymorphisms. J Immunol 2001; 167: 2457-2458.
117 Siddiqui MR, Meisner S, Tosh K et al. A major susceptibility locus for leprosy in India maps to chromosome 10p13. Nature
genet 2001; 27: 439-41.
118 Tosh K, Meisner S, Siddiqui MR et al. A Region of Chromosome 20 Is Linked to Leprosy Susceptibility in a South Indian Population. J Infect Dis 2002; 186:1190–3.
119 Nair RP, Henseler T, Jenisch S, et al. Evidence for two psoriasis susceptibility loci (HLA and 17q) and two novel candidate regions (16q and 20p) by genome-wide scan. Hum Mol Genet 1997; 6:1349–56.
120 Trembath RC, Clough RL, Rosbotham JL, et al. Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Hum Mol Genet 1997; 6:813–20.
121 Cookson WO, Ubhi B, Lawrence R, et al. Genetic linkage of childhood atopic dermatitis to psoriasis susceptibility loci. Nat Genet 2001; 27:372–3.
122 Rajalingam R, Mehra NK, Singal DP. Polymorphism in heat-shock protein 70-1 (HSP70-1) gene promoter region and susceptibility to tuberculoid leprosy and pulmonary tuberculosis in Asian Indians. Indian J Exp Biol 2000; 38(7): 658-662.
This journal is licensed under a Creative Commons Attribution 4.0 International License.