Use of monoclonal antibody for detecting Vibrio cholerae O1 in oysters by means of agglutination test
PDF (Português (Brasil))

Keywords

V. cholerae
monoclonal antibodies
oysters

How to Cite

1.
Ristori CA, Rowlands REG, Jakabi M, Gelli DS, Scola MCG, Gaspari EN de. Use of monoclonal antibody for detecting Vibrio cholerae O1 in oysters by means of agglutination test. Rev Inst Adolfo Lutz [Internet]. 2006 Apr. 1 [cited 2024 May 18];65(2):127-32. Available from: https://periodicos.saude.sp.gov.br/RIAL/article/view/32885

Abstract

V. cholerae serovar O1 is the etiologic agent responsible for pandemic cholera, and it is considered the most important human pathogenic Vibrio. The symptoms presented by patients affected by this bacterium vary from mild diarrhea to severe disease, and may even lead to death. Among the diverse types of seafood, the oysters pose as an important means for cholera transmission. Traditional methods used to detect V. cholerae are laborious and time-consuming, and there is an urgent need to establish a rapid, sensitive, specific, simple, and low-cost testing . The objective of this trial was, therefore, to assess the performance of a slide agglutination test using latex particles sensitized with specific monoclonal antibodies (MAb) for detecting V. cholerae O1 in experimentally-contaminated oysters. The slide agglutination test based on sensitized latex detected 1.2X102 CFU of bacteria (dilution 1:32). Oyster samples used in the present study, for being experimentally contaminated, were originally free of V. cholerae, but other bacteria were found, such as: Proteus mirabilis, Pseudomonas spp, and other vibrios. The present study demonstrated that the period of time needed to verify the food contamination with V. cholerae is 18 hours, taking in consideration that traditional methods require an average of 7-day period for getting the final results. The produced MAb presented 100% of specificity to V. cholerae 01.
https://doi.org/10.53393/rial.2006.65.32885
PDF (Português (Brasil))

References

1. Faruque SM, Albert MJ, Mekalanos JJ. Epidemiology, Genetics and Ecologyof Toxigenic Vibriocholerae. Microbiol Mol Biol Rev 1998; 62 (4): 1301-14.

2. Shimada T et al. Two strains of Vibriocholerae non-O1 possessing somatic(O) antigen factors in common with Vibriocholerae serogroup O139 synonym“Bengal”. Curr Microbiol 1994; 29: 331-3.

3. Yamai S, Okitsu T, Shimada T, Katsube Y. Distribution of serogroups of Vibriocholerae non-O1 non-O139 with specific reference to their ability to producecholera toxin and addition of novel serogroups. Journal of the Japanese Association for Infectious Diseases 1997; 71: 1037–45.

4. Albert MJ et al. Large epidemic of cholera-like disease in Bangladesh causedby Vibriocholerae O139 synonym Bengal. Lancet 1993; 342: 387-90.

5. Shimada T et al. Outbreak of Vibriocholerae non-O1 in Índia and Bangladesh. Lancet 1993; 341:1347.

6. Carvajal GH, Sanchez J, Ayala ME, Hase A. Differences among marine andhospital strains of Vibrio cholerae during Peruvian epidemic. J Gen Appl Microbiol 1998; 44(1):27-33.

7. Eyles MJ, Davey GR. Vibriocholerae and enteric bacteria in oyster-producingareas of two urban estuaries in Australia. Int J Food Microbiol 1998; 6: 207-18.

8. Borroto RJ. La ecología de Vibriocholerae serogrupo O1 en ambientesacuáticos. Rev Panam Salud Publica 1997; 1(1):3-8.

9. Varnam AH, Evans MG. Foodborne pathogens. London: Wolfe Publishing;1991.

10. Tauxe RV, Mintz ED, Quick RE. Epidemiologic Cholera in the New World: Translating Field Epidemiology into New Prevention Strategies. Emerg Infect Dis 1995; 1(4):141-6.

11.Lipp EK, Rose JB. The role of seafood in foodborne diseases in the United States of America. Rev Sci Tech Off Int Epiz Paris 1997; 16(2):620-40.

12. Klontz KC, Tauxe RV, Cook WL, Rilley WH, Wachsmuth K. Cholera afterthe consumption of raw oysters. Ann Inter Med 1991; 107(6): 846-8.

13. D’oro LC, Merlo E, Ariano E, Silvestri MG, Ceraminiello A, Negri E, LaVecchia C. La Vibriocholerae Outbreak in Italy. Emerg Infect Dis 1999;5(2):300-1.

14. Germani Y, Quilici ML, Glaziou P, Mattera D, Morvan J, Fournier J M.Emergence of Cholera in the Central African Republic. Eur J Clin Microbiol Infect Dis 1998; 17: 888-90.

15. Tauxe RV. Emerging Foodborne Diseases: An Evolving Public Health Challenge. Emerg Infect Dis 1997; 3(4): 425-34.

16. Ministério da Saúde - Secretaria de Vigilância em Saúde (SVS). Cólera: a situação da doença no Brasil. Disponível em: http://portal.saude.gov.br/portal/svs/visualizar_texto.cfm?idtxt=21688. Acesso em: 28 de ago. 2006.

17. ICMSF. Microorganisms in foods 5 – Microbiological Specifications of Food Pathogens. London: Blackie Academic, 1996. 513p.

18. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody ofpredefined specificity. Nature 1975; 256: 495-7.

19. Peterson NC. Advances in monoclonal antibody technology: genetic engineeringof mice, cells, and immunoglobulins. ILAR J 2005; 46(3):314-9.

20. Belo EF, Coutinho LM, Ferraz AS, De Gaspari EN. Production of monoclonalantibody to subtype 9 of Neisseria meningitidis and the distribution of thissubtype in Brazil. Braz J Infect Dis 2004; 8(6): 407-18.

21. De Gaspari EN, Zollinger W. Expression of class 5 antigens by meningococcalstrains obtained from patients in Brazil and evaluation of two new monoclonalantibodies. Braz J Infect Dis 2001; 5(3):143-53.

22. De Gaspari EN. Production and characterization of a new monoclonalantibody against Neisseria meningitidis: study of the cross-reactivity withdifferent bacterial genera. Hybridoma 2000; 19(6): 445-53.

23. Espindola NM, De Gaspari EN, Nakamura PM, VAZ, AJ. Production ofmonoclonal antibodies anti-Taenia crassiceps cysticerci with cross-reactivitywith Taenia solium antigens. Rev Inst Med Trop São Paulo 2000; 42(3):175-7.

24. De-Gaspari EN, Ribeiro-Filho AA, Zollinger WD. The use of filter papermonoclonal antibodies in a Dot-blot test for typing Neisseria meningitidis B.Braz J Med Biol Res 1994; 27(12):2889-93.

25. Holmdah lR, Moran T, Andersson M. A rapid and efficient immunizationprotocol for production of monoclonal antibodies reactive with autoantigens. J Immunol Methods 1985; 83:379-84.

26. Chackerian B, Lowy DR, Schiller JT. Conjugation of a self-antigen topapillomavirus-like particles allows for efficient induction of protectiveautoantibodies. J Clin Invest 2001; 108:415-23.

27. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins frompolyacrylamide gels to nitrocellulose sheets: procedure and some applications. Biotechnology. 1992; 24:145–9.

28. Laemmli UK. Cleavage of structural proteins during the assembly of the headof bacteriophage T4. Nature 1970; 227: 680-5.

29. DePaola AJr, Kaysner CA. “Vibrio”. In: FDA – Bacteriological AnalyticalManual online. New York: AOAC International, 2001. Disponível em: http://www.cfsan.fda.gov/~ebam/bam-9.html. Acesso em: 10 de abr. 2005.

30. Carmo MAS. Estudo da imunogenicidade da proteína de classe 5C de Neisseria meningitidis B em camundongos imunizados pela via nasal. (Dissertação de Mestrado). São Paulo (SP): Programa de Pós-Graduação em Ciências da Coordenadoria de Controle de Doenças da Secretaria de Estadoda Saúde de São Paulo, 2005.

31. Coutinho, LMCC. Uso de anticorpos monoclonais na seleção de antígenos lipopolissacáride da cepa epidêmica de B:4:P1.15 de Neisseria meningitidis: Imunização intranasal. (Dissertação de Mestrado). São Paulo (SP): Faculdadede Ciências Farmacêuticas, Universidade de São Paulo, 2002.

32. Seneme Ferraz A. Avaliação da resposta imune em coelhos pela via de imunização nasal com antígenos de Neisseria meningitidis B selecionados para os imunotipos L379↑ e L8↑ por meio de anticorpos monoclonais.(Dissertação de Mestrado). São Paulo (SP): Programa de Pós-Graduação emCiências da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, 2005.

33. Belo EFT. Expressão antigênica de LPS de cepas meningocócicas prevalentesno Brasil e produção de anticorpos monoclonais como subsídios para estudosepidemiológicos. Dissertação (Mestrado em Análises Clinicas) - Faculdadede Ciências Farmacêuticas, Universidade de São Paulo, 2002.

34. Ansell PR. Hybridoma technology: a view from the patent arena. ImmunolToday 2000; 21(8): 357-8.

35. Bach JF, Fracchia GN, Chatenoud L. Safety and efficacy of therapeuticmonoclonal antibodies in clinical therapy. Immunol Today 1993; 14:421- 5.

36. Ristori CA. Bactérias patogênicas em ostras (Crassostrea brasiliana) e águada região estuarina de Cananéia, litoral sul do Estado de São Paulo.(Dissertação de Mestrado). São Paulo (SP): Instituto de Ciências Biomédicas, Universidade de São Paulo, 2000.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2006 Instituto Adolfo Lutz Journal

Downloads

Download data is not yet available.